AN ELEMENTARY PROOF OF THE CONDUCTOR-DISCRIMINANT FORMULA

2010 ◽  
Vol 06 (05) ◽  
pp. 1191-1197
Author(s):  
GABRIEL VILLA-SALVADOR

For a finite abelian extension K/ℚ, the conductor-discriminant formula establishes that the absolute value of the discriminant of K is equal to the product of the conductors of the elements of the group of Dirichlet characters associated to K. The simplest proof uses the functional equation for the Dedekind zeta function of K and its expression as the product of the L-series attached to the various Dirichlet characters associated to K. In this paper, we present an elementary proof of this formula considering first K contained in a cyclotomic number field of pn-roots of unity, where p is a prime number, and in the general case, using the ramification index of p given by the group of Dirichlet characters.

2012 ◽  
Vol 08 (01) ◽  
pp. 125-147 ◽  
Author(s):  
HABIBA KADIRI

Let K be a number field, nK be its degree, and dK be the absolute value of its discriminant. We prove that, if dK is sufficiently large, then the Dedekind zeta function ζK(s) has no zeros in the region: [Formula: see text], [Formula: see text], where log M = 12.55 log dK + 9.69nK log |ℑ𝔪 s| + 3.03 nK + 58.63. Moreover, it has at most one zero in the region:[Formula: see text], [Formula: see text]. This zero if it exists is simple and is real. This argument also improves a result of Stark by a factor of 2: ζK(s) has at most one zero in the region [Formula: see text], [Formula: see text].


2010 ◽  
Vol 81 (2) ◽  
pp. 343-349 ◽  
Author(s):  
TERENCE TAO

AbstractLet 〈𝒫〉⊂N be a multiplicative subsemigroup of the natural numbers N={1,2,3,…} generated by an arbitrary set 𝒫 of primes (finite or infinite). We give an elementary proof that the partial sums ∑ n∈〈𝒫〉:n≤x(μ(n))/n are bounded in magnitude by 1. With the aid of the prime number theorem, we also show that these sums converge to ∏ p∈𝒫(1−(1/p)) (the case where 𝒫 is all the primes is a well-known observation of Landau). Interestingly, this convergence holds even in the presence of nontrivial zeros and poles of the associated zeta function ζ𝒫(s)≔∏ p∈𝒫(1−(1/ps))−1 on the line {Re(s)=1}. As equivalent forms of the first inequality, we have ∣∑ n≤x:(n,P)=1(μ(n))/n∣≤1, ∣∑ n∣N:n≤x(μ(n))/n∣≤1, and ∣∑ n≤x(μ(mn))/n∣≤1 for all m,x,N,P≥1.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Jean Marie De Koninck ◽  
Imre Kátai

Given an arbitrary prime number q, set ξ=e2πi/q. We use a clever selection of the values of ξα, α=1,2,…, in order to create normal numbers. We also use a famous result of André Weil concerning Dirichlet characters to construct a family of normal numbers.


1995 ◽  
Vol 138 ◽  
pp. 199-208 ◽  
Author(s):  
Stéphane Louboutin

Let M be any number field. We let DM, dM, hu, , AM and RegM be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of M, respectively.we set If q is any odd prime we let (⋅/q) denote the Legendre’s symbol.


2007 ◽  
Vol 143 (6) ◽  
pp. 1427-1464 ◽  
Author(s):  
Manuel Breuning ◽  
David Burns

AbstractWe formulate an explicit conjecture for the leading term at s=1 of the equivariant Dedekind zeta-function that is associated to a Galois extension of number fields. We show that this conjecture refines well-known conjectures of Stark and Chinburg, and we use the functional equation of the zeta-function to compare it to a natural conjecture for the leading term at s=0.


2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)


Sign in / Sign up

Export Citation Format

Share Document