scholarly journals Leading terms of Artin L-functions at s=0 and s=1

2007 ◽  
Vol 143 (6) ◽  
pp. 1427-1464 ◽  
Author(s):  
Manuel Breuning ◽  
David Burns

AbstractWe formulate an explicit conjecture for the leading term at s=1 of the equivariant Dedekind zeta-function that is associated to a Galois extension of number fields. We show that this conjecture refines well-known conjectures of Stark and Chinburg, and we use the functional equation of the zeta-function to compare it to a natural conjecture for the leading term at s=0.

2015 ◽  
Vol 93 (2) ◽  
pp. 199-210 ◽  
Author(s):  
ANDREA FERRAGUTI ◽  
GIACOMO MICHELI

Let $K$ be a number field with ring of integers ${\mathcal{O}}$. After introducing a suitable notion of density for subsets of ${\mathcal{O}}$, generalising the natural density for subsets of $\mathbb{Z}$, we show that the density of the set of coprime $m$-tuples of algebraic integers is $1/{\it\zeta}_{K}(m)$, where ${\it\zeta}_{K}$ is the Dedekind zeta function of $K$. This generalises a result found independently by Mertens [‘Ueber einige asymptotische Gesetze der Zahlentheorie’, J. reine angew. Math. 77 (1874), 289–338] and Cesàro [‘Question 75 (solution)’, Mathesis 3 (1883), 224–225] concerning the density of coprime pairs of integers in $\mathbb{Z}$.


2014 ◽  
Vol 1006-1007 ◽  
pp. 1071-1075
Author(s):  
Xiao Yu Liang ◽  
Xin Zhang

<p>A finite group is called exceptional if for a Galois extension of number fields with the Galois groups , the zeta function of between and does not appear in the Brauer-Kuroda relation of the Dedekind zeta functions. Furthermore, a finite group is called very exceptional if its nontrivial subgroups are all exceptional. In this paper,a Nilpotent group is very exceptional if and only if it has a unique subgroup of prime order for each divisor of .</p>


Author(s):  
Jerzy Browkin ◽  
Herbert Gangl

AbstractAssuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D2p; p an odd prime, or the alternating group A4. We include numerical results illustrating these formulas.


2010 ◽  
Vol 06 (05) ◽  
pp. 1191-1197
Author(s):  
GABRIEL VILLA-SALVADOR

For a finite abelian extension K/ℚ, the conductor-discriminant formula establishes that the absolute value of the discriminant of K is equal to the product of the conductors of the elements of the group of Dirichlet characters associated to K. The simplest proof uses the functional equation for the Dedekind zeta function of K and its expression as the product of the L-series attached to the various Dirichlet characters associated to K. In this paper, we present an elementary proof of this formula considering first K contained in a cyclotomic number field of pn-roots of unity, where p is a prime number, and in the general case, using the ramification index of p given by the group of Dirichlet characters.


2009 ◽  
Vol 05 (02) ◽  
pp. 293-301
Author(s):  
XIAN-JIN LI

It is well known that the Euler product formula for the Riemann zeta function ζ(s) is still valid for ℜ(s) = 1 and s ≠ 1. In this paper, we extend this result to zeta functions of number fields. In particular, we show that the Dedekind zeta function ζk(s) for any algebraic number field k can be written as the Euler product on the line ℜ(s) = 1 except at the point s = 1. As a corollary, we obtain the Euler product formula on the line ℜ(s) = 1 for Dirichlet L-functions L(s, χ) of real characters.


Author(s):  
M. Ram Murty ◽  
Siddhi S. Pathak

For an algebraic number field [Formula: see text], let [Formula: see text] be the associated Dedekind zeta-function. It is conjectured that [Formula: see text] is transcendental for any positive integer [Formula: see text]. The only known case of this conjecture was proved independently by Siegel and Klingen, namely that, when [Formula: see text] is a totally real number field, [Formula: see text] is an algebraic multiple of [Formula: see text] and hence, is transcendental. If [Formula: see text] is not totally real, the question of whether [Formula: see text] is irrational or not remains open. In this paper, we prove that for a fixed integer [Formula: see text], at most one of [Formula: see text] is rational, as [Formula: see text] varies over all imaginary quadratic fields. We also discuss a generalization of this theorem to CM-extensions of number fields.


1989 ◽  
Vol 106 (3) ◽  
pp. 403-417 ◽  
Author(s):  
Wolfgang Müller

Let K be a quadratic number field with discriminant D. The aim of this paper is to study the mean square of the Dedekind zeta function ζK on the critical line, i.e.It was proved by Chandrasekharan and Narasimhan[1] that (1) is at most of order O(T(log T)2). As they noted at the end of their paper, it ‘would seem likely’ that (1) behaves asymptotically like a2T(log T)2, with some constant a2 depending on K. Applying a general mean value theorem for Dirichlet polynomials, one can actually proveThis may be done in just the same way as this general mean value theorem can be used to prove Ingham's classical result on the fourth power moment of the Riemann zeta function (cf. [3], chapter 5). In 1979 Heath-Brown [2] improved substantially on Ingham's result. Adapting his method to the above situation a much better result than (2) can be obtained. The following Theorem deals with a slightly more general situation. Note that ζK(s) = ζ(s)L(s, XD) where XD is a real primitive Dirichlet character modulo |D|. There is no additional difficulty in allowing x to be complex.


1995 ◽  
Vol 138 ◽  
pp. 199-208 ◽  
Author(s):  
Stéphane Louboutin

Let M be any number field. We let DM, dM, hu, , AM and RegM be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of M, respectively.we set If q is any odd prime we let (⋅/q) denote the Legendre’s symbol.


Author(s):  
Alessandro Cobbe

Let [Formula: see text] be a Galois extension of [Formula: see text]-adic number fields and let [Formula: see text] be a de Rham representation of the absolute Galois group [Formula: see text] of [Formula: see text]. In the case [Formula: see text], the equivariant local [Formula: see text]-constant conjecture describes the compatibility of the equivariant Tamagawa number conjecture with the functional equation of Artin [Formula: see text]-functions and it can be formulated as the vanishing of a certain element [Formula: see text] in [Formula: see text]; a similar approach can be followed also in the case of unramified twists [Formula: see text] of [Formula: see text] (see [W. Bley and A. Cobbe, The equivariant local [Formula: see text]-constant conjecture for unramified twists of [Formula: see text], Acta Arith. 178(4) (2017) 313–383; D. Izychev and O. Venjakob, Equivariant epsilon conjecture for 1-dimensional Lubin–Tate groups, J. Théor. Nr. Bordx. 28(2) (2016) 485–521]). One of the main technical difficulties in the computation of [Formula: see text] arises from the so-called cohomological term [Formula: see text], which requires the construction of a bounded complex [Formula: see text] of cohomologically trivial modules which represents [Formula: see text] for a full [Formula: see text]-stable [Formula: see text]-sublattice [Formula: see text] of [Formula: see text]. In this paper, we generalize the construction of [Formula: see text] in Theorem 2 of [W. Bley and A. Cobbe, The equivariant local [Formula: see text]-constant conjecture for unramified twists of [Formula: see text], Acta Arith. 178(4) (2017) 313–383] to the case of a higher dimensional [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document