scholarly journals QUATERNIONIC MODULAR FORMS OF ANY WEIGHT

2014 ◽  
Vol 10 (01) ◽  
pp. 31-53 ◽  
Author(s):  
RICCARDO BRASCA

In this work we give a geometric definition, as sections of line bundles, of p-adic analytic families of overconvergent modular forms attached to an indefinite quaternion algebra over ℚ. As a consequence of this, we obtain the existence of an eigencurve in this context. Our theory includes the interpretation of a modular form as a rule on test objects. We introduce the Hecke operators U and T l, both in families and for a single weight. We show that the U -operator acts compactly on the space of overconvergent modular forms. We finally construct the eigencurve, a rigid analytic variety whose points correspond to systems of eigenvalues associated to overconvergent eigenforms of finite slope with respect to the U -operator.

1997 ◽  
Vol 147 ◽  
pp. 71-106 ◽  
Author(s):  
S. Böcherer ◽  
R. Schulze-Pillot

AbstractWe continue our study of Yoshida’s lifting, which associates to a pair of automorphic forms on the adelic multiplicative group of a quaternion algebra a Siegel modular form of degree 2. We consider here the case that the automorphic forms on the quaternion algebra correspond to modular forms of arbitrary even weights and square free levels; in particular we obtain a construction of Siegel modular forms of weight 3 attached to a pair of elliptic modular forms of weights 2 and 4.


1985 ◽  
Vol 100 ◽  
pp. 83-96 ◽  
Author(s):  
Yoshio Tanigawa

In connection with the Shimura correspondence, Shintani [6] and Niwa [4] constructed a modular form by the integral with the theta kernel arising from the Weil representation. They treated the group Sp(1) × O(2, 1). Using the special isomorphism of O(2, 1) onto SL(2), Shintani constructed a modular form of half-integral weight from that of integral weight. We can write symbolically his case as “O(2, 1)→ Sp(1)” Then Niwa’s case is “Sp(l)→ O(2, 1)”, that is from the halfintegral to the integral. Their methods are generalized by many authors. In particular, Niwa’s are fully extended by Rallis-Schiffmann to “Sp(l)→O(p, q)”.


2012 ◽  
Vol 149 (1) ◽  
pp. 32-62 ◽  
Author(s):  
Riccardo Brasca

AbstractIn this work, we set up a theory of p-adic modular forms over Shimura curves over totally real fields which allows us to consider also non-integral weights. In particular, we define an analogue of the sheaves of kth invariant differentials over the Shimura curves we are interested in, for any p-adic character. In this way, we are able to introduce the notion of overconvergent modular form of any p-adic weight. Moreover, our sheaves can be put in p-adic families over a suitable rigid analytic space, that parametrizes the weights. Finally, we define Hecke operators, including the U operator, that acts compactly on the space of overconvergent modular forms. We also construct the eigencurve.


1984 ◽  
Vol 25 (2) ◽  
pp. 203-206 ◽  
Author(s):  
S. Raghavan

In his unpublished manuscripts (referred to by Birch [1] as Fragment V, pp. 247–249), Ramanujan [3] gave a whole list of assertions about various (transforms of) modular forms possessing naturally associated Euler products, in more or less the spirit of his extremely beautiful paper entitled “On certain arithmetical functions” (in Trans. Camb. Phil. Soc. 22 (1916)). It is simply amazing how Ramanujan could write down (with an ostensibly profound insight) a basis of eigenfunctions (of Hecke operators) whose associated Dirichlet series have Euler products, anticipating by two decades the famous work of Hecke and Petersson. That he had further realized, in the event of a modular form f not corresponding to an Euler product, the possibility of restoring the Euler product property to a suitable linear combination of modular forms of the same type as f, is evidently fantastic.


2019 ◽  
Vol 15 (05) ◽  
pp. 907-924
Author(s):  
Yingkun Li ◽  
Michael Neururer

In this paper, we prove a conjecture of Broadhurst and Zudilin concerning a divisibility property of the Fourier coefficients of a meromorphic modular form using the generalization of the Shimura lift by Borcherds and Hecke operators on vector-valued modular forms developed by Bruinier and Stein. Furthermore, we construct a family of meromorphic modular forms with this property.


2013 ◽  
Vol 09 (08) ◽  
pp. 1895-1922
Author(s):  
LEA TERRACINI

Let p be a prime and B be a quaternion algebra indefinite over Q and ramified at p. We consider the space of quaternionic modular forms of weight k and level p∞, endowed with the action of Hecke operators. By using cohomological methods, we show that the p-adic topological Hecke algebra does not depend on the weight k. This result provides a quaternionic version of a theorem proved by Hida for classical modular forms; we discuss the relationship of our result to Hida's theorem in terms of Jacquet–Langlands correspondence.


Author(s):  
Bas Edixhoven

This chapter applies the main result on the computation of Galois representations attached to modular forms of level one to the computation of coefficients of modular forms. It treats the case of the discriminant modular form, that is, the computation of Ramanujan's tau-function at primes, and then deals with the more general case of forms of level one and arbitrary weight k, reformulated as the computation of Hecke operators Tⁿ as ℤ-linear combinations of the Tᵢ with i < k = 12. The chapter gives an application to theta functions of even, unimodular positive definite quadratic forms over ℤ.


Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

AbstractThis article is a continuation of our previous work [7] on the Iwasawa theory of an elliptic modular form over an imaginary quadratic field $K$, where the modular form in question was assumed to be ordinary at a fixed odd prime $p$. We formulate integral Iwasawa main conjectures at non-ordinary primes $p$ for suitable twists of the base change of a newform $f$ to an imaginary quadratic field $K$ where $p$ splits, over the cyclotomic ${\mathbb{Z}}_p$-extension, the anticyclotomic ${\mathbb{Z}}_p$-extensions (in both the definite and the indefinite cases) as well as the ${\mathbb{Z}}_p^2$-extension of $K$. In order to do so, we define Kobayashi–Sprung-style signed Coleman maps, which we use to introduce doubly signed Selmer groups. In the same spirit, we construct signed (integral) Beilinson–Flach elements (out of the collection of unbounded Beilinson–Flach elements of Loeffler–Zerbes), which we use to define doubly signed $p$-adic $L$-functions. The main conjecture then relates these two sets of objects. Furthermore, we show that the integral Beilinson–Flach elements form a locally restricted Euler system, which in turn allow us to deduce (under certain technical assumptions) one inclusion in each one of the four main conjectures we formulate here (which may be turned into equalities in favorable circumstances).


2018 ◽  
Vol 30 (4) ◽  
pp. 887-913 ◽  
Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

Abstract This is the first in a series of articles where we will study the Iwasawa theory of an elliptic modular form f along the anticyclotomic {\mathbb{Z}_{p}} -tower of an imaginary quadratic field K where the prime p splits completely. Our goal in this portion is to prove the Iwasawa main conjecture for suitable twists of f assuming that f is p-ordinary, both in the definite and indefinite setups simultaneously, via an analysis of Beilinson–Flach elements.


2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document