scholarly journals Constructing totally p-adic numbers of small height

Author(s):  
S. Checcoli ◽  
A. Fehm

Bombieri and Zannier gave an effective construction of algebraic numbers of small height inside the maximal Galois extension of the rationals which is totally split at a given finite set of prime numbers. They proved, in particular, an explicit upper bound for the lim inf of the height of elements in such fields. We generalize their result in an effective way to maximal Galois extensions of number fields with given local behavior at finitely many places.

Author(s):  
Naoki Kumakawa

In this paper, we study the Iwasawa [Formula: see text]-invariant of the cyclotomic [Formula: see text]-extension of [Formula: see text], where [Formula: see text] are distinct odd prime numbers satisfying certain arithmetic conditions. Moreover, we obtain an upper bound of the [Formula: see text]-part of the class number of certain quartic number fields by calculating the Sinnott index explicitly.


2018 ◽  
Vol 14 (06) ◽  
pp. 1605-1617 ◽  
Author(s):  
Francesco Amoroso

We study the Mahler measure of generators of a Galois extension with Galois group the full symmetric group. We prove that two classical constructions of generators give always algebraic numbers of big height. These results answer a question of Smyth and provide some evidence to a conjecture which asserts that the height of such a generator grows to infinity with the degree of the extension.


2009 ◽  
Vol 05 (03) ◽  
pp. 383-405
Author(s):  
JONATHAN W. SANDS

Fix a Galois extension [Formula: see text] of totally real number fields such that the Galois group G has exponent 2. Let S be a finite set of primes of F containing the infinite primes and all those which ramify in [Formula: see text], let [Formula: see text] denote the primes of [Formula: see text] lying above those in S, and let [Formula: see text] denote the ring of [Formula: see text]-integers of [Formula: see text]. We then compare the Fitting ideal of [Formula: see text] as a ℤ[G]-module with a higher Stickelberger ideal. The two extend to the same ideal in the maximal order of ℚ[G], and hence in ℤ[1/2][G]. Results in ℤ[G] are obtained under the assumption of the Birch–Tate conjecture, especially for biquadratic extensions, where we compute the index of the higher Stickelberger ideal. We find a sufficient condition for the Fitting ideal to contain the higher Stickelberger ideal in the case where [Formula: see text] is a biquadratic extension of F containing the first layer of the cyclotomic ℤ2-extension of F, and describe a class of biquadratic extensions of F = ℚ that satisfy this condition.


Author(s):  
Sam Streeter

AbstractWe give an asymptotic formula for the number of weak Campana points of bounded height on a family of orbifolds associated to norm forms for Galois extensions of number fields. From this formula we derive an asymptotic for the number of elements with m-full norm over a given Galois extension of $$\mathbb {Q}$$ Q . We also provide an asymptotic for Campana points on these orbifolds which illustrates the vast difference between the two notions, and we compare this to the Manin-type conjecture of Pieropan, Smeets, Tanimoto and Várilly-Alvarado.


2013 ◽  
Vol 09 (06) ◽  
pp. 1491-1503 ◽  
Author(s):  
TSUYOSHI ITOH ◽  
YASUSHI MIZUSAWA ◽  
MANABU OZAKI

For a finite set S of prime numbers, we consider the S-ramified Iwasawa module which is the Galois group of the maximal abelian pro-p-extension unramified outside S over the cyclotomic ℤp-extension of a number field k. In the case where S does not contain p and k is the rational number field or an imaginary quadratic field, we give the explicit formulae of the ℤp-ranks of the S-ramified Iwasawa modules by using Brumer's p-adic version of Baker's theorem on the linear independence of logarithms of algebraic numbers.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2019 ◽  
Vol 15 (08) ◽  
pp. 1617-1633 ◽  
Author(s):  
Antonella Perucca ◽  
Pietro Sgobba

For all number fields the failure of maximality for the Kummer extensions is bounded in a very strong sense. We give a direct proof (without relying on the Bashmakov–Ribet method) of the fact that if [Formula: see text] is a finitely generated and torsion-free multiplicative subgroup of a number field [Formula: see text] having rank [Formula: see text], then the ratio between [Formula: see text] and the Kummer degree [Formula: see text] is bounded independently of [Formula: see text]. We then apply this result to generalize to higher rank a theorem of Ziegler from 2006 about the multiplicative order of the reductions of algebraic integers (the multiplicative order must be in a given arithmetic progression, and an additional Frobenius condition may be considered).


2016 ◽  
Vol 27 (03) ◽  
pp. 1650025 ◽  
Author(s):  
J. N. Alonso Álvarez ◽  
J. M. Fernández Vilaboa ◽  
R. González Rodríguez

In this paper, we consider Hom-(co)modules associated to a Hom-(co)associative algebra and define the notion of Hom-triple. We introduce the definitions of cleft extension and Galois extension with normal basis in this setting and we show that, as in the classical case, these notions are equivalent in the Hom setting.


Author(s):  
Wencai Liu

Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $H$ as a perturbation of the free operator $H_0$, where $(H_0u)(n)= u({n+1})+u({n-1})$. For $H_0$ (no perturbation), $\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$ and $H_0$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $H_0+V$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $\limsup _{n\to \infty } n|V(n)|=a<\infty .$ We obtain a lower/upper bound of $a$ such that $H_0+V$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $\{ E_j\}_{j=1}^N$ in $(-2,2)$ with $0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$, we construct the explicit potential $V(n)=\frac{O(1)}{1+|n|}$ such that $H=H_0+V$ has eigenvalues $\{ E_j\}_{j=1}^N$.5: Given any countable set of points $\{ E_j\}$ in $(-2,2)$ with $0\notin \{ E_j\}+\{ E_j\}$, and any function $h(n)>0$ going to infinity arbitrarily slowly, we construct the explicit potential $|V(n)|\leq \frac{h(n)}{1+|n|}$ such that $H=H_0+V$ has eigenvalues $\{ E_j\}$.


Sign in / Sign up

Export Citation Format

Share Document