EXTRACTION OF METALLIC NANOTUBES OF ZEOLITE-SUPPORTED SINGLE-WALLED CARBON NANOTUBES SYNTHESIZED FROM ALCOHOL

NANO ◽  
2007 ◽  
Vol 02 (04) ◽  
pp. 221-226 ◽  
Author(s):  
YUTAKA MAEDA ◽  
MASAHIRO HASHIMOTO ◽  
TADASHI HASEGAWA ◽  
MAKOTO KANDA ◽  
TAKAHIRO TSUCHIYA ◽  
...  

Single-walled carbon nanotubes (SWNTs) synthesized by catalytic decomposition of an alcohol were purified by extraction. The purified SWNTs were characterized on the basis of visible-near infrared (vis-NIR) absorption, photoluminescence and Raman spectroscopic analyses, scanning electron microscopy (SEM) observation, and thermal analysis. Selective extraction of metallic nanotubes was also achieved by the extraction condition.

2020 ◽  
Vol 6 (2) ◽  
pp. 30
Author(s):  
Yuji Matsukawa ◽  
Kazuo Umemura

It has been reported that even if single-walled carbon nanotubes (SWNTs) are coated with the same polymer, the redox characteristics change of each chirality may differ. Particularly, the addition of hydrogen peroxide (H2O2) minimally affects the near-infrared (NIR) absorption spectra of the dsDNA-(6,5)-enriched SWNT complex (DNA-SWNT complex). Detecting the redox properties of (6,5) chirality using NIR absorption spectra has been one of the issues to be solved. We hypothesized that an oxidizing agent with high oxidizing power is required to detect the absorption spectra of (6,5) chirality. In this study, we used KMnO4, which contains atoms with a high oxidation number. A dispersion was prepared by mixing 0.5 mg of (6,5)-enriched SWNT powder with 1 mg/mL of DNA solution. After adding H2O2 or KMnO4 to this dispersion and oxidizing it, catechin solutions were added to reduce the dispersion. The absorption peak of the DNA-SWNT complex decreased by 23.9% following the addition of KMnO4 (final concentration: 0.5 µM) and recovered 30.7% following the addition of the catechin solution. We revealed that the changes in the absorption spectra change of (6,5) chirality, which could not be detected by H2O2, can be detected by using KMnO4. We also varied the concentration of KMnO4 and verified whether the adsorption of KMnO4 can be modeled as a Langmuir adsorption isotherm.


2013 ◽  
Vol 8 (11) ◽  
pp. 873-880 ◽  
Author(s):  
Nicole M. Iverson ◽  
Paul W. Barone ◽  
Mia Shandell ◽  
Laura J. Trudel ◽  
Selda Sen ◽  
...  

2021 ◽  
Vol 69 ◽  
pp. 11-21
Author(s):  
Ping Zhang ◽  
Wen Hui Yi ◽  
Bai Lei ◽  
Jin Feng Zhou ◽  
Yi Long Tian ◽  
...  

Due to the difficulty in the selective synthesis of semiconductor (s-) and metal (m-) single-walled carbon nanotubes (SWCNTs), we still need to explore the selective extraction technology of s-SWCNTs. Using Poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl] (PCz) extraction of s-SWCNTs has attracted extensive attention in recent years, because it can selective extraction of large-diameter s-SWCNTs with high purity. However, influence of the molecular weight of this polymer on the s-SWCNTs selective extraction properties remains unclear. In this study, we used PCz with different average molecular weights to study the ability of selective extraction s-SWCNTs from pristine arc discharge carbon nanotubes. Spectra studies indicate that compared to the PCz with lower molecular weight, the PCz with higher molecular weight has better selective extraction ability, and can help to obtain s-SWCNTs with higher purity (>99%) and high yield. FETs devices have been prepared by s-SWCNTs obtained via PCz with higher molecular weight exhibit higher on/off ratio, lower off current and lower subthreshold swing. This work offers a reference of the design and synthesis of PCz polymer that performs sufficient selective ability in extracting s-SWCNTs with promising applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lukasz Przypis ◽  
Maciej Krzywiecki ◽  
Yoshiaki Niidome ◽  
Haruka Aoki ◽  
Tomohiro Shiraki ◽  
...  

AbstractSingle-walled carbon nanotubes (SWCNTs) have been modified with ester groups using typical organic radical chemistry. Consequently, traps for mobile excitons have been created, which enhanced the optical properties of the material. The proposed methodology combines the benefits of mainstream approaches to create luminescent defects in SWCNTs while it simultaneously avoids their limitations. A step change was achieved when the aqueous medium was abandoned. The selection of an appropriate organic solvent enabled much more facile modification of SWCNTs. The presented technique is quick and versatile as it can engage numerous reactants to tune the light emission capabilities of SWCNTs. Importantly, it can also utilize SWCNTs sorted by chirality using conjugated polymers to enhance their light emission capabilities. Such differentiation is conducted in organic solvents, so monochiral SWCNT can be directly functionalized using the demonstrated concept in the same medium without the need to redisperse the material in water.


Sign in / Sign up

Export Citation Format

Share Document