oxidizing power
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2445
Author(s):  
Lizeth Urán-Duque ◽  
Julio César Saldarriaga-Molina ◽  
Ainhoa Rubio-Clemente

In this work, the recent trends in the application of the sulfate radical-based advanced oxidation processes (SR-AOPs) for the treatment of wastewater polluted with emerging contaminants (ECs) and pathogenic load were systematically studied due to the high oxidizing power ascribed to these technologies. Additionally, because of the economic benefits and the synergies presented in terms of efficiency in ECs degradation and pathogen inactivation, the combination of the referred to AOPs and conventional treatments, including biological processes, was covered. Finally, the barriers and limitations related to the implementation of SR-AOPs were described, highlighting the still scarce full-scale implementation and the high operating-costs associated, especially when solar energy cannot be used in the oxidation systems.


Akademos ◽  
2021 ◽  
pp. 53-60
Author(s):  
Larisa Mocanu ◽  
◽  
Maria Gonta ◽  
Vera Matveevici ◽  
Gheorghe Duca ◽  
...  

This paper aims to study the degradation and oxidation/mineralization process of cephalexin in model systems using Fenton’s reagent for UV irradiation (λ = 254 nm). The effect of pH (2-11), concentration of H2O2 (0,3434 mg/L) and concentration of Fe(II) (0-28 mg/L) on the degradation of 50 mg/L CPX were investigated. It has been determined optimum conditions for photocatalytic oxidation of CPX. Increasing the amount of H2O2 plays an inhibitory role in the production of hydroxyl radicals and reduces the process efficiency. This can be attributed to the reaction of excess peroxide with •OH and the formation of HO2 •, which has less oxidizing power compared to free hydroxyl radical. And as the concentration of the catalyst increases to the optimum, the excess of Fe(II) ions reacts with the hydroxyl radical and, therefore, the efficiency of the process also is reduced. Accordingly, the optimum degradation efficiency of 88 % and 83% for COD was obtained under the following conditions: pH 2,5, H2O2 concentration – 3,4 mg/L, Fe(II) ions concentration – 5,6 mg/L, cephalexin concentration – 50 mg/L, and reaction time – 60 min. Thus, the current study demonstrated that the photo-Fenton reactor can be used effectively as an advanced oxidation treatment unit for degradation of cephalexin under optimized environmental conditions.


2021 ◽  
Vol 22 (9) ◽  
pp. 4566
Author(s):  
Shin-ichi Hirano ◽  
Yusuke Ichikawa ◽  
Bunpei Sato ◽  
Haru Yamamoto ◽  
Yoshiyasu Takefuji ◽  
...  

Although ionizing radiation (radiation) is commonly used for medical diagnosis and cancer treatment, radiation-induced damages cannot be avoided. Such damages can be classified into direct and indirect damages, caused by the direct absorption of radiation energy into DNA and by free radicals, such as hydroxyl radicals (•OH), generated in the process of water radiolysis. More specifically, radiation damage concerns not only direct damages to DNA, but also secondary damages to non-DNA targets, because low-dose radiation damage is mainly caused by these indirect effects. Molecular hydrogen (H2) has the potential to be a radioprotective agent because it can selectively scavenge •OH, a reactive oxygen species with strong oxidizing power. Animal experiments and clinical trials have reported that H2 exhibits a highly safe radioprotective effect. This paper reviews previously reported radioprotective effects of H2 and discusses the mechanisms of H2, not only as an antioxidant, but also in intracellular responses including anti-inflammation, anti-apoptosis, and the regulation of gene expression. In doing so, we demonstrate the prospects of H2 as a novel and clinically applicable radioprotective agent.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 544
Author(s):  
Julian Colunje ◽  
Pedro Garcia-Caparros ◽  
Jorge F. Moreira ◽  
María Teresa Lao

Ozone has a high oxidizing power avoiding the presence of residues, so it is a good candidate for use in organic farming. However, its application in fertigation has been little studied. Two experiments were conducted simultaneously to check the aims of this work. The aim of the first experiment was to study pepper response under the nutrient solution supply and the application of O3 and its interactions, and the aim of the second experiment was to determine the optimal dosage of O3 to be supplied, from the point of view of plant development and nutritional and physiological status in both experiments. We conclude that O3 supply via fertigation increased pepper biomass production. According to the results obtained, we recommend that the optimal dosage of O3 in pepper plants be from 0.18 to 0.36 mg L−1 due to its higher associated biomass production. Under these dosages, pepper plants showed a higher leaf area and higher photosynthetic pigment concentration. Similarly, under these dosages, N, P, and K plant uptake were higher, allowing a higher synthesis of bioassimilates.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1091
Author(s):  
Yuji Matsukawa ◽  
Kazuo Umemura

Semiconductor single-walled carbon nanotubes (SWNTs) have unique characteristics owing to differences in the three-dimensional structure (chirality) expressed by the chiral index (n,m), and many studies on the redox characteristics of chirality have been reported. In this study, we investigated the relationship between the chirality of SWNTs and the oxidizing power of oxidants by measuring the near-infrared (NIR) absorption spectra of two double-stranded DNA-SWNT complexes with the addition of three oxidants with different oxidizing powers. A dispersion was prepared by mixing 0.5 mg of SWNT powder with 1 mg/mL of DNA solution. Different concentrations of hydrogen peroxide (H2O2), potassium hexachloroidylate (IV) (K2IrCl6), or potassium permanganate (KMnO4) were added to the dispersion to induce oxidation. Thereafter, a catechin solution was added to observe if the absorbance of the oxidized dispersion was restored by the reducing action of the catechin. We found that the difference in the oxidizing power had a significant effect on the detection sensitivity of the chiralities of the SWNTs. Furthermore, we revealed a detectable range of oxidants with different oxidizing powers for each chirality.


2021 ◽  
Author(s):  
Uwe Bayer ◽  
Daniel Werner ◽  
Andreas Berkefeld ◽  
Cäcilia Maichle-Mössmer ◽  
Reiner Anwander

Para-quinones reveal distinct reactivity towards homoleptic cerous silylamide and siloxide complexes depending on both their oxidizing power and the supporting ligand L.


2021 ◽  
Author(s):  
Emma Cook ◽  
Charles Machan

A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The...


2020 ◽  
Vol 6 (2) ◽  
pp. 30
Author(s):  
Yuji Matsukawa ◽  
Kazuo Umemura

It has been reported that even if single-walled carbon nanotubes (SWNTs) are coated with the same polymer, the redox characteristics change of each chirality may differ. Particularly, the addition of hydrogen peroxide (H2O2) minimally affects the near-infrared (NIR) absorption spectra of the dsDNA-(6,5)-enriched SWNT complex (DNA-SWNT complex). Detecting the redox properties of (6,5) chirality using NIR absorption spectra has been one of the issues to be solved. We hypothesized that an oxidizing agent with high oxidizing power is required to detect the absorption spectra of (6,5) chirality. In this study, we used KMnO4, which contains atoms with a high oxidation number. A dispersion was prepared by mixing 0.5 mg of (6,5)-enriched SWNT powder with 1 mg/mL of DNA solution. After adding H2O2 or KMnO4 to this dispersion and oxidizing it, catechin solutions were added to reduce the dispersion. The absorption peak of the DNA-SWNT complex decreased by 23.9% following the addition of KMnO4 (final concentration: 0.5 µM) and recovered 30.7% following the addition of the catechin solution. We revealed that the changes in the absorption spectra change of (6,5) chirality, which could not be detected by H2O2, can be detected by using KMnO4. We also varied the concentration of KMnO4 and verified whether the adsorption of KMnO4 can be modeled as a Langmuir adsorption isotherm.


2020 ◽  
Author(s):  
Israel Temprano ◽  
Tao Liu ◽  
Enrico Petrucco ◽  
James H. J. Ellison ◽  
Gunwoo Kim ◽  
...  

<b>The development of moisture-tolerant, LiOH-based non-aqueous Li-O<sub>2</sub> batteries is a promising route to bypassing the inherent limitations caused by the instability of their typical discharge products, LiO<sub>2</sub> and Li<sub>2</sub>O<sub>2</sub>. The use of the I<sup>-</sup>/I<sub>3</sub><sup>-</sup> redox couple to mediate the LiOH-based oxygen reduction and oxidation reactions has proven challenging to develop due to the multiple reaction paths induced by the oxidation of I<sup>-</sup> on cell charging. In this work we demonstrate a reversible LiOH-based Li-O<sub>2</sub> battery cycling through a 4 e<sup>-</sup>/O<sub>2</sub> process with low charging overpotential (below 3.5 V vs Li/Li<sup>+</sup>) by introducing an ionic liquid to a glyme-based electrolyte containing LiI and water. The addition to the ionic liquid increases the oxidizing power of I<sub>3</sub><sup>-</sup>, shifting the charging mechanism from IO<sup>-</sup>/IO<sub>3</sub><sup>- </sup>formation to O<sub>2</sub> evolution</b>


Sign in / Sign up

Export Citation Format

Share Document