POLY(3, 4-ETHYLENEDIOXYTHIOPHENE): POLY(STYRENESULFONATE)/SINGLE-WALL CARBON NANOTUBE COMPOSITE FILM FOR THE HOLE TRANSPORT LAYER IN POLYMER SOLAR CELLS

NANO ◽  
2011 ◽  
Vol 06 (06) ◽  
pp. 583-588 ◽  
Author(s):  
NAOKI KISHI ◽  
SHINYA KATO ◽  
TAKESHI SAITO ◽  
JUNKI HAYASHI ◽  
DAIKI ITO ◽  
...  

The composite thin film of poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate)/single-wall carbon nanotubes (PEDOT:PSS/SWCNTs) for a hole transport layer in polymer solar cells have been explored. PEDOT:PSS/SWCNT composite film exhibited higher electrical conductivity than the control PEDOT:PSS film, suggesting the increase in carrier transport passes through SWCNTs in the hole transport layer. We also demonstrated the improvement of a fill factor and short circuit current density in the polymer solar cells with the hole transport layer of PEDOT:PSS/SWCNT as compared with PEDOT:PSS.

2020 ◽  
pp. 096739112096347
Author(s):  
Çisem Kırbıyık Kurukavak ◽  
Selen Polat

Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) is one of the most widely used hole transport layer (HTL) in polymer solar cells (PSCs). However, the improving of the conductivity and transparency of PEDOT:PSS thin films is still needed. To solve this problem, we here introduce 2-methoxyethanol (EGME) and dimethyl sulfoxide (DMSO) mixed secondary solvent to PEDOT:PSS solution as a novel additive to the best of our knowledge. We determined that the EGME-DMSO doped PEDOT:PSS layer provides better energy level alignment, conductivity and morphology with the help of methods of UV-Vis spectroscopy, atomic force microscopy, etc. The addition of 15% (v/v.) volume of EGME-DMSO mixed co-solvent improves the efficiency from 2.8% of control device to 3.9%. The significant enhancement of the short-circuit current density (Jsc) of 13.7 to 16.5 mA cm−2 is the main reason for this increase of performance due to better charge transport properties. This suggests that the EGME-DMSO mixed co-solvent doping into PEDOT:PSS solution is a simple approach to fabricate highly efficient PSCs.


2014 ◽  
Vol 130 ◽  
pp. 599-604 ◽  
Author(s):  
Seunghwan Bae ◽  
Jea Uk Lee ◽  
Heung-su Park ◽  
Eui Hyuk Jung ◽  
Jae Woong Jung ◽  
...  

2018 ◽  
Vol 61 ◽  
pp. 207-214 ◽  
Author(s):  
Qian Xie ◽  
Jingwen Zhang ◽  
Haitao Xu ◽  
Xunfan Liao ◽  
Yiwang Chen ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 354
Author(s):  
Shaoxi Wang ◽  
He Guan ◽  
Yue Yin ◽  
Chunfu Zhang

With the continuous development of solar cells, the perovskite solar cells (PSCs), whose hole transport layer plays a vital part in collection of photogenerated carriers, have been studied by many researchers. Interface transport layers are important for efficiency and stability enhancement. In this paper, we demonstrated that lithium (Li) and cobalt (Co) codoped in the novel inorganic hole transport layer named NiOx, which were deposited onto ITO substrates via solution methods at room temperature, can greatly enhance performance based on inverted structures of planar heterojunction PSCs. Compared to the pristine NiOx films, doping a certain amount of Li and Co can increase optical transparency, work function, electrical conductivity and hole mobility of NiOx film. Furthermore, experimental results certified that coating CH3NH3PbIxCl3−x perovskite films on Li and Co- NiOx electrode interlayer film can improve chemical stability and absorbing ability of sunlight than the pristine NiOx. Consequently, the power conversion efficiency (PCE) of PSCs has a great improvement from 14.1% to 18.7% when codoped with 10% Li and 5% Co in NiOx. Moreover, the short-circuit current density (Jsc) was increased from 20.09 mA/cm2 to 21.7 mA/cm2 and the fill factor (FF) was enhanced from 0.70 to 0.75 for the PSCs. The experiment results demonstrated that the Li and Co codoped NiOx can be a effective dopant to improve the performance of the PSCs.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950127 ◽  
Author(s):  
Farhad Jahantigh ◽  
S. M. Bagher Ghorashi

Perovskite solar cells have recently been considered to be an auspicious candidate for the advancement of future photovoltaic research. A power conversion efficiency (PCE) as high as 22% has been reported to be reached, which can be obtained through an inexpensive and high-throughput solution process. Modeling and simulation of these cells can provide deep insights into their fundamental mechanism of performance. In this paper, two different perovskite solar cells are designed by using COMSOL Multiphysics to optimize the thickness of each layer and the overall thickness of the cell. Electric potential, electron and hole concentrations, generation rate, open-circuit voltage, short-circuit current and the output power were calculated. Finally, PCEs of 20.7% and 26.1% were predicted. Afterwards, according to the simulation results, the role of the hole transport layer (HTL) was investigated and the optimum thickness of the perovskite was measured to be 200[Formula: see text]nm for both cells. Therefore, the spin coating settings are selected so that a coating with this thickness for cell 1 is deposited. In order to compare the performance of HTM layer, solar cells with a Spiro-OMeTAD HTM and without the HTM layer in their structure were fabricated. According to the obtained photovoltaic properties, the solar cell made with Spiro-OMeTAD has a more favorable open-circuit voltage ([Formula: see text]), short-circuit current density ([Formula: see text]), fill factor (FF) and PCE compared to the cell without the HTM layer. Also, hysteresis depends strongly on the perovskite grain size, because large average grain size will lead to an increase in the grain’s contact surface area and a decrease in the density of grain boundaries. Finally, according to the results, it was concluded that, in the presence of a hole transport layer, ion transfer was better and ion accumulation was less intense, and therefore, the hysteresis decreases.


2016 ◽  
Vol 18 (5) ◽  
pp. 3463-3471 ◽  
Author(s):  
Leize Zhu ◽  
Beau J. Richardson ◽  
Qiuming Yu

A dual hole transport layer with PEDOT:PSS/MoO3 provides an effective way to enhance the performance of inverted hybrid CdSe–polymer solar cells.


2015 ◽  
Vol 132 ◽  
pp. 196-203 ◽  
Author(s):  
Se-Phin Cho ◽  
Jun-Seok Yeo ◽  
Dong-Yu Kim ◽  
Seok-in Na ◽  
Seok-Soon Kim

2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1227 ◽  
Author(s):  
Byung Kim ◽  
Woongsik Jang ◽  
Dong Wang

Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.


2019 ◽  
Vol 2 (9) ◽  
pp. 6577-6583 ◽  
Author(s):  
Le Liu ◽  
Fenfen Li ◽  
Chengjie Zhao ◽  
Fuzhen Bi ◽  
Tonggang Jiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document