scholarly journals Analysis of the role of hole transport layer materials to the performance of perovskite solar cell

2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.

NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950127 ◽  
Author(s):  
Farhad Jahantigh ◽  
S. M. Bagher Ghorashi

Perovskite solar cells have recently been considered to be an auspicious candidate for the advancement of future photovoltaic research. A power conversion efficiency (PCE) as high as 22% has been reported to be reached, which can be obtained through an inexpensive and high-throughput solution process. Modeling and simulation of these cells can provide deep insights into their fundamental mechanism of performance. In this paper, two different perovskite solar cells are designed by using COMSOL Multiphysics to optimize the thickness of each layer and the overall thickness of the cell. Electric potential, electron and hole concentrations, generation rate, open-circuit voltage, short-circuit current and the output power were calculated. Finally, PCEs of 20.7% and 26.1% were predicted. Afterwards, according to the simulation results, the role of the hole transport layer (HTL) was investigated and the optimum thickness of the perovskite was measured to be 200[Formula: see text]nm for both cells. Therefore, the spin coating settings are selected so that a coating with this thickness for cell 1 is deposited. In order to compare the performance of HTM layer, solar cells with a Spiro-OMeTAD HTM and without the HTM layer in their structure were fabricated. According to the obtained photovoltaic properties, the solar cell made with Spiro-OMeTAD has a more favorable open-circuit voltage ([Formula: see text]), short-circuit current density ([Formula: see text]), fill factor (FF) and PCE compared to the cell without the HTM layer. Also, hysteresis depends strongly on the perovskite grain size, because large average grain size will lead to an increase in the grain’s contact surface area and a decrease in the density of grain boundaries. Finally, according to the results, it was concluded that, in the presence of a hole transport layer, ion transfer was better and ion accumulation was less intense, and therefore, the hysteresis decreases.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1227 ◽  
Author(s):  
Byung Kim ◽  
Woongsik Jang ◽  
Dong Wang

Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.


Author(s):  
Xuefeng Xia ◽  
Dan Zhang ◽  
Xiaofeng Wang ◽  
Zonghu Xiao ◽  
Fan Li

In recent years, the nickel oxide (NiOx)-based planar p-i-n perovskite solar cell (PSC) has progressed rapidly. Nevertheless, poor electrical properties of NiOx, unoptimized band alignment between NiOx and perovskites, as...


The researchers now days are avid of solar cells despite the efficiency issues. As lead-based halide perovskite exhibit toxic nature alternatives for the anti- toxic perovskite solar cells(PSCs) are gaining much research. Bis(sulfanylidene )tungsten is a toxic free feasible emerging option with direct band gap of value 1.8 eV. Tungsten disulfide is other chemical name of Bis(sulfanylidene)tungsten. In this paper, perovskite solar cell (PSC) with Bis(sulfanylidene)tungsten (WS2 ) as electron transport layer and spiro-OMeTAD as hole transport layer is modelled and simulated using SCAPS software to analyze performance parameters. The device simulations results are compared for comprehensive defect study of WS2 as ETL. With integration of WS2 and spiro-OMeTAD in the perovskite design, the outcomes are proficient enough with 25.96% of PCE, 22.06 mA/cm2 Jsc, 1.280V Voc and 91.76% FF. Launching the batch setup for absorber layer thickness further resulted with competent PCE 27.78%. The outcomes signified that the toxic-free WS2 based PSC can be a prominent upcoming perspective in terms of environmentally pristine nature and capitulate comparative high efficiency


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 974
Author(s):  
Bo-Tau Liu ◽  
Hong-Ru Lin ◽  
Rong-Ho Lee ◽  
Nima E. Gorji ◽  
Jung-Chuan Chou

Polyhedral oligomeric silsesquioxane (POSS), featuring a hollow-cage or semi-cage structure is a new type of organic–inorganic hybrid nanoparticles. POSS combines the advantages of inorganic components and organic components with a great potential for optoelectronic applications such as in emerging perovskite solar cells. When POSS is well dispersed in the polymer matrix, it can effectively improve the thermal, mechanical, magnetic, acoustic, and surface properties of the polymer. In this study, POSS was spin-coated as an ultra-thin passivation layer over the hole transporting layer of nickel-oxide (NOx) in the structure of a perovskite solar cell. The POSS incorporation led to a more hydrophobic and smoother surface for further perovskite deposition, resulting in the increase in the grain size of perovskite. An appropriate POSS passivation layer could effectively reduce the recombination of the electron and hole at grain boundaries and increase the short-circuit current from 18.0 to 20.5 mA·cm−2. Moreover, the open-circuit voltage of the cell could slightly increase over 1 V.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2191
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Jeongmin Lim ◽  
Seong Young Kong ◽  
Yong Ju Yun

Inorganic-organic mesoscopic solar cells become a promising alternative for conventional solar cells. We describe a CH3NH3PbI3 perovskite-sensitized solid-state solar cells with the use of different polymer hole transport materials such as 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-OMeTAD), poly(3-hexylthiophene-2,5-diyl) (P3HT), and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7). The device with a spiro-OMeTAD-based hole transport layer showed the highest efficiency of 6.9%. Interestingly, the PTB7 polymer, which is considered an electron donor material, showed dominant hole transport behaviors in the perovskite solar cell. A 200 nm thin layer of PTB7 showed comparatively good efficiency (5.5%) value to the conventional spiro-OMeTAD-based device.


2021 ◽  
Vol 34 (1) ◽  
pp. 01-08
Author(s):  
B GopalKrishna ◽  
Sanjay Tiwari

Perovskite solar cells are emerging photovoltaic devices with PCE of above 25%. Perovskite are suitable light absorber materials in solar cells with excellent properties like appropriate band gap energy, long carrier lifetime and diffusion length, and high extinction coefficient. Simulation study is an important technique to understand working mechanisms of perovskites solar cells. The study would help develop efficient, stable PSCs experimentally. In this study, modeling of perovskite solar cell was carried out through Setfos software. The optimization of different parameters of layer structure of solar cell would help to achieve maximum light absorption in the perovskite layer of solar cell. Simulation study is based drift-diffusion model to study the different parameters of perovskite solar cell. Hysteresis is one of the factors in the perovskite solar cell which may influence the device performance. The measurement of abnormal hysteresis can be done by current-voltage curve during backward scan during simulation study. In backward scan, the measurement starts from biasing voltage higher than open circuit voltage and sweep to voltage below zero. The numerical simulation used to study the various parameters like open circuit voltage, short circuit current, fill factor, power conversion efficiency and hysteresis. The simulation results would help to understand the photophysics of solar cell physics which would help to fabricate highly efficient and stable perovskite solar cells experimentally.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 354
Author(s):  
Shaoxi Wang ◽  
He Guan ◽  
Yue Yin ◽  
Chunfu Zhang

With the continuous development of solar cells, the perovskite solar cells (PSCs), whose hole transport layer plays a vital part in collection of photogenerated carriers, have been studied by many researchers. Interface transport layers are important for efficiency and stability enhancement. In this paper, we demonstrated that lithium (Li) and cobalt (Co) codoped in the novel inorganic hole transport layer named NiOx, which were deposited onto ITO substrates via solution methods at room temperature, can greatly enhance performance based on inverted structures of planar heterojunction PSCs. Compared to the pristine NiOx films, doping a certain amount of Li and Co can increase optical transparency, work function, electrical conductivity and hole mobility of NiOx film. Furthermore, experimental results certified that coating CH3NH3PbIxCl3−x perovskite films on Li and Co- NiOx electrode interlayer film can improve chemical stability and absorbing ability of sunlight than the pristine NiOx. Consequently, the power conversion efficiency (PCE) of PSCs has a great improvement from 14.1% to 18.7% when codoped with 10% Li and 5% Co in NiOx. Moreover, the short-circuit current density (Jsc) was increased from 20.09 mA/cm2 to 21.7 mA/cm2 and the fill factor (FF) was enhanced from 0.70 to 0.75 for the PSCs. The experiment results demonstrated that the Li and Co codoped NiOx can be a effective dopant to improve the performance of the PSCs.


Sign in / Sign up

Export Citation Format

Share Document