Analysis of Local Surface Plasmon Resonance in Multilayered Au/Ag/Graphene Nanoshells

NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750062 ◽  
Author(s):  
Chao Liu ◽  
Zhaoting Liu ◽  
Jingwei Lv ◽  
Tao Sun ◽  
Qiang Liu ◽  
...  

The localized surface plasmon resonance (LSPR) properties of Au/Ag/graphene nanoshells are studied by discrete dipole approximation (DDA). The coupled resonance wavelengths show a remarkable dependence on the graphene thickness as well as refractive index of the surrounding medium. The resonance wavelengths of Au/Ag/graphene nanoshells red-shift as the thickness of the graphene layer is increased, when the radii of the Au core and Ag interlayer are 40[Formula: see text]nm and 45[Formula: see text]nm, respectively. Specifically, the longer wavelength red-shifts from 540[Formula: see text]nm to 740[Formula: see text]nm when the refractive index varies from 1.25 to 2.05.

NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550117
Author(s):  
Chao Liu ◽  
Jingwei Lv ◽  
Famei Wang ◽  
Qiang Liu ◽  
Haiwei Mu ◽  
...  

Multilayered nanoshells have attracted much attention due to their unique optical, electronic and magnetic properties. In this work, numerical calculation using discrete dipole approximation (DDA) is conducted to investigate the quad-layered metal nanoshell consisting of a particle with a dielectric silica (SiO2) core, inner cadium sulfide (CdS) shell, middle indium tin oxide (ITO) shell and outer metal silver (Ag) shell. The phenomenon is interpreted by plasmon hybridization theory and the Ag–ITO–CdS–SiO2 multilayered nanoshells are studied by extinction spectra of localized surface plasmon resonance. The variation in the spectrum peak with nanoparticle thickness and refractive index of the surrounding medium is derived. The electric field enhancement contour around the nanoparticles under illumination is analyzed at the plasmon resonance wavelength. The [Formula: see text], [Formula: see text], and [Formula: see text] modes red-shift with the refractive index of the surrounding medium and increase in the layer thickness causes either blue-shift or red-shift as shown by the extinction spectra. The mechanism of the red-shift or blue-shift is discussed. The [Formula: see text] mode blue-shifts and furthermore, the [Formula: see text] and [Formula: see text] modes of the Ag coated multilayered nanostructure are noticeable by comparing the extinction efficiency spectra of the Au–ITO–CdS–SiO2 and Ag–ITO–CdS–SiO2 multilayered nanoshells.


2021 ◽  
Vol 4 (3(60)) ◽  
pp. 9-13
Author(s):  
Iryna Yaremchuk ◽  
Tetiana Bulavinets

The object of research is plasmonic properties copper of monosulfide nanoparticles. One of the most problematic areas is that there is still no unambiguous answer to which main copper monosulfide nanoparticles parameters have a decisive effect on their resonance absorption, scattering or electric field enhancement. It is necessary to study the plasmonic properties of copper monosulfide nanoparticles depending on their main parameter, namely the dielectric constant. The principle of dipole equivalence and Mee-Gans theory for the modeling of the optical nanoparticle characteristics is used. It is found that dielectric constant is a crucial parameter determining the resulting optical response of such nanoparticles. The surrounding medium refractive index affects the position and magnitude of the nanoparticles maximum plasmonic absorption. The nonspherical nanoparticles are characterized by two plasmon peaks corresponding to transverse and longitudinal localized surface plasmon resonance if the ratio between the axes is higher than 1.5. The ellipsoidal nanoparticles exhibit higher sensitivity to changes in the refractive index of the surrounding medium in comparison to the spherical ones. The obtained research results are primarily the basis for further comprehensive research of plasmonic copper monosulfide nanoparticles for their specialized applications. Second, knowledge of the influence of the nanoparticle dielectric constant on their resulting spectral characteristics allow tuning of the localized surface plasmon resonance peak position in a wide wavelength range, from 500 to 1200 nm, using the nanoparticle synthesis technique. Thus, the material under study is promising for sensor applications in a wide spectral range.


Sign in / Sign up

Export Citation Format

Share Document