scholarly journals Pairwise disjoint maximal cliques in random graphs and sequential motion planning on random right angled Artin groups

2019 ◽  
Vol 11 (02) ◽  
pp. 371-386
Author(s):  
Jesús González ◽  
Bárbara Gutiérrez ◽  
Hugo Mas

The clique number of a random graph in the Erdös–Rényi model [Formula: see text] yields a random variable which takes values asymptotically almost surely (as [Formula: see text]) within one of an explicit logarithmic function [Formula: see text]. We show that random graphs have, asymptotically almost surely, arbitrarily many pairwise disjoint cliques with [Formula: see text] vertices. Such a result is motivated by, and applied to, the multi-tasking version of Farber’s topological model to study the motion planning problem in robotics. Indeed, we study the behavior of all the higher topological complexities of Eilenberg–MacLane spaces of type [Formula: see text], where [Formula: see text] is a random right angled Artin group.

2011 ◽  
Vol 03 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ARMINDO COSTA ◽  
MICHAEL FARBER

In this paper, we study topological invariants of a class of random groups. Namely, we study right angled Artin groups associated to random graphs and investigate their Betti numbers, cohomological dimension and topological complexity. The latter is a numerical homotopy invariant reflecting complexity of motion planning algorithms in robotics. We show that the topological complexity of a random right angled Artin group assumes, with probability tending to one, at most three values, when n → ∞. We use a result of Cohen and Pruidze which expresses the topological complexity of right angled Artin groups in combinatorial terms. Our proof deals with the existence of bi-cliques in random graphs.


10.37236/702 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Fan Chung ◽  
Mary Radcliffe

We consider random graphs such that each edge is determined by an independent random variable, where the probability of each edge is not assumed to be equal. We use a Chernoff inequality for matrices to show that the eigenvalues of the adjacency matrix and the normalized Laplacian of such a random graph can be approximated by those of the weighted expectation graph, with error bounds dependent upon the minimum and maximum expected degrees. In particular, we use these results to bound the spectra of random graphs with given expected degree sequences, including random power law graphs. Moreover, we prove a similar result giving concentration of the spectrum of a matrix martingale on its expectation.


2011 ◽  
Vol 20 (5) ◽  
pp. 763-775 ◽  
Author(s):  
VALENTAS KURAUSKAS ◽  
COLIN McDIARMID

The classical Erdős–Pósa theorem states that for each positive integer k there is an f(k) such that, in each graph G which does not have k + 1 disjoint cycles, there is a blocker of size at most f(k); that is, a set B of at most f(k) vertices such that G−B has no cycles. We show that, amongst all such graphs on vertex set {1,. . .,n}, all but an exponentially small proportion have a blocker of size k. We also give further properties of a random graph sampled uniformly from this class, concerning uniqueness of the blocker, connectivity, chromatic number and clique number.A key step in the proof of the main theorem is to show that there must be a blocker as in the Erdős–Pósa theorem with the extra ‘redundancy’ property that B–v is still a blocker for all but at most k vertices v ∈ B.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Author(s):  
Krzysztof Tchoń ◽  
Katarzyna Zadarnowska

AbstractWe examine applicability of normal forms of non-holonomic robotic systems to the problem of motion planning. A case study is analyzed of a planar, free-floating space robot consisting of a mobile base equipped with an on-board manipulator. It is assumed that during the robot’s motion its conserved angular momentum is zero. The motion planning problem is first solved at velocity level, and then torques at the joints are found as a solution of an inverse dynamics problem. A novelty of this paper lies in using the chained normal form of the robot’s dynamics and corresponding feedback transformations for motion planning at the velocity level. Two basic cases are studied, depending on the position of mounting point of the on-board manipulator. Comprehensive computational results are presented, and compared with the results provided by the Endogenous Configuration Space Approach. Advantages and limitations of applying normal forms for robot motion planning are discussed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Enrique Miguel Barquinero ◽  
Lorenzo Ruffoni ◽  
Kaidi Ye

Abstract We study Artin kernels, i.e. kernels of discrete characters of right-angled Artin groups, and we show that they decompose as graphs of groups in a way that can be explicitly computed from the underlying graph. When the underlying graph is chordal, we show that every such subgroup either surjects to an infinitely generated free group or is a generalized Baumslag–Solitar group of variable rank. In particular, for block graphs (e.g. trees), we obtain an explicit rank formula and discuss some features of the space of fibrations of the associated right-angled Artin group.


Author(s):  
Xin-Sheng Ge ◽  
Li-Qun Chen

The motion planning problem of a nonholonomic multibody system is investigated. Nonholonomicity arises in many mechanical systems subject to nonintegrable velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the control problem of system can be converted to the motion planning problem for a driftless control system. In this paper, we propose an optimal control approach for nonholonomic motion planning. The genetic algorithm is used to optimize the performance of motion planning to connect the initial and final configurations and to generate a feasible trajectory for a nonholonomic system. The feasible trajectory and its control inputs are searched through a genetic algorithm. The effectiveness of the genetic algorithm is demonstrated by numerical simulation.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 799-800 ◽  
Author(s):  
Victoria Grushkovskaya ◽  
Alexander Zuyev

10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


Sign in / Sign up

Export Citation Format

Share Document