scholarly journals Variations on the theme of the uniform boundary condition

2019 ◽  
pp. 1-28 ◽  
Author(s):  
Daniel Fauser ◽  
Clara Löh

The uniform boundary condition (UBC) in a normed chain complex asks for a uniform linear bound on fillings of null-homologous cycles. For the [Formula: see text]-norm on the singular chain complex, Matsumoto and Morita established a characterization of the UBC in terms of bounded cohomology. In particular, spaces with amenable fundamental group satisfy the UBC in every degree. We will give an alternative proof of statements of this type, using geometric Følner arguments on the chain level instead of passing to the dual cochain complex. These geometric methods have the advantage that they also lead to integral refinements. In particular, we obtain applications in the context of integral foliated simplicial volume.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel Fauser

Abstract The simplicial volume of oriented closed connected smooth manifolds that admit a non-trivial smooth S 1 {S^{1}} -action vanishes. In the present work, we prove a version of this result for the integral foliated simplicial volume of aspherical manifolds: The integral foliated simplicial volume of aspherical oriented closed connected smooth manifolds that admit a non-trivial smooth S 1 {S^{1}} -action vanishes. Our proof uses the geometric construction of Yano’s proof for ordinary simplicial volume as well as the parametrized uniform boundary condition for S 1 {S^{1}} .


2020 ◽  
pp. 1-18
Author(s):  
NIKOLAI EDEKO

Abstract We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \text{\rm C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$ . For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$ .


2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1231
Author(s):  
Carmen Escribano ◽  
Raquel Gonzalo ◽  
Emilio Torrano

In this work, our aim is to obtain conditions to assure polynomial approximation in Hilbert spaces L 2 ( μ ) , with μ a compactly supported measure in the complex plane, in terms of properties of the associated moment matrix with the measure μ . To do it, in the more general context of Hermitian positive semidefinite matrices, we introduce two indexes, γ ( M ) and λ ( M ) , associated with different optimization problems concerning theses matrices. Our main result is a characterization of density of polynomials in the case of measures supported on Jordan curves with non-empty interior using the index γ and other specific index related to it. Moreover, we provide a new point of view of bounded point evaluations associated with a measure in terms of the index γ that will allow us to give an alternative proof of Thomson’s theorem, by using these matrix indexes. We point out that our techniques are based in matrix algebra tools in the framework of Hermitian positive definite matrices and in the computation of certain indexes related to some optimization problems for infinite matrices.


Author(s):  
M. MORASCHINI ◽  
A. SAVINI

AbstractFollowing the philosophy behind the theory of maximal representations, we introduce the volume of a Zimmer’s cocycle Γ × X → PO° (n, 1), where Γ is a torsion-free (non-)uniform lattice in PO° (n, 1), with n > 3, and X is a suitable standard Borel probability Γ-space. Our numerical invariant extends the volume of representations for (non-)uniform lattices to measurable cocycles and in the uniform setting it agrees with the generalized version of the Euler number of self-couplings. We prove that our volume of cocycles satisfies a Milnor–Wood type inequality in terms of the volume of the manifold Γ\ℍn. Additionally this invariant can be interpreted as a suitable multiplicative constant between bounded cohomology classes. This allows us to define a family of measurable cocycles with vanishing volume. The same interpretation enables us to characterize maximal cocycles for being cohomologous to the cocycle induced by the standard lattice embedding via a measurable map X → PO° (n, 1) with essentially constant sign.As a by-product of our rigidity result for the volume of cocycles, we give a different proof of the mapping degree theorem. This allows us to provide a complete characterization of maps homotopic to local isometries between closed hyperbolic manifolds in terms of maximal cocycles.In dimension n = 2, we introduce the notion of Euler number of measurable cocycles associated to a closed surface group and we show that it extends the classic Euler number of representations. Our Euler number agrees with the generalized version of the Euler number of self-couplings up to a multiplicative constant. Imitating the techniques developed in the case of the volume, we show a Milnor–Wood type inequality whose upper bound is given by the modulus of the Euler characteristic of the associated closed surface. This gives an alternative proof of the same result for the generalized version of the Euler number of self-couplings. Finally, using the interpretation of the Euler number as a multiplicative constant between bounded cohomology classes, we characterize maximal cocycles as those which are cohomologous to the one induced by a hyperbolization.


Sign in / Sign up

Export Citation Format

Share Document