WAVELET-BASED PALM VEIN RECOGNITION SYSTEM

2010 ◽  
Vol 03 (02) ◽  
pp. 131-134
Author(s):  
QIANG LI ◽  
YAN'AN ZENG ◽  
KUNTAO YANG

A new personal recognition system using the palm vein pattern is presented in this article. It is the first time that the palm vein pattern is used for personal recognition. The texture feature of palm vein is extracted by wavelet decomposition. With our palm vein image database, we employed the nearest neighbor (NN) classifier to test the performance of the system. Experimental results show that the algorithm based on wavelet transform can reach a correct recognition rate (CRR) of 98.8%.

2013 ◽  
Vol 760-762 ◽  
pp. 1398-1401
Author(s):  
Wei Wu ◽  
Wei Qi Yuan ◽  
Hui Song

Palm vein pattern recognition is one of the newest biometric techniques researched today.At present, literatures selecte the center of the palm as the ROI of palm vein recognition. However the vein image in this area is not clear in some peoples palm. In this paper, we proposed a new location method of ROI which takes thenar area as the ROI. In the experiment part, it compares the recognition rate between the new and the traditional ROI in self-established contactless palm vein database. The result shows that this new method has got the recognition rate of 98.9258% and has increased recognition rate 2.0911% compared with the traditional one.


2013 ◽  
Vol 333-335 ◽  
pp. 1106-1109
Author(s):  
Wei Wu

Palm vein pattern recognition is one of the newest biometric techniques researched today. This paper proposes project the palm vein image matrix based on independent component analysis directly, then calculates the Euclidean distance of the projection matrix, seeks the nearest distance for classification. The experiment has been done in a self-build palm vein database. Experimental results show that the algorithm of independent component analysis is suitable for palm vein recognition and the recognition performance is practical.


2013 ◽  
Vol 347-350 ◽  
pp. 3469-3472 ◽  
Author(s):  
Wei Wu ◽  
Sen Lin ◽  
Hui Song

Compared with the traditional method of contact collection, contactless acquisition is the mainstream and trend of palm vein recognition. However, this method may lead to image deformation caused by no parallel of the palm plane and the sensor plane. In order to improve the limited effect of Scale Invariant Feature Transform (SIFT) about this problem, a better method of palm vein recognition which based on principle line SIFT is proposed. Based on the self-built database, this method is compared with the SIFT and other typical palm vein recognition methods, the experimental results show that our system can achieve the best performance.


2014 ◽  
Vol 687-691 ◽  
pp. 3861-3868
Author(s):  
Zheng Hong Deng ◽  
Li Tao Jiao ◽  
Li Yan Liu ◽  
Shan Shan Zhao

According to the trend of the intelligent monitoring system, on the basis of the study of gait recognition algorithm, the intelligent monitoring system is designed based on FPGA and DSP; On the one hand, FPGA’s flexibility and fast parallel processing algorithms when designing can be both used to avoid that circuit can not be modified after designed; On the other hand, the advantage of processing the digital signal of DSP is fully taken. In the feature extraction and recognition, Zernike moment is selected, at the same time the system uses the nearest neighbor classification method which is more mature and has good real-time performance. Experiments show that the system has high recognition rate.


2019 ◽  
Vol 9 (19) ◽  
pp. 4178 ◽  
Author(s):  
Wei Nie ◽  
Bob Zhang ◽  
Shuping Zhao

Image acutance or edge contrast in an image plays a crucial role in hyperspectral hand biometrics, especially in the local feature representation phase. However, the study of acutance in this application has not received a lot of attention. Therefore, in this paper we propose that there is an optimal range of image acutance in hyperspectral hand biometrics. To locate this optimal range, a thresholded pixel-wise acutance value (TPAV) is firstly proposed to assess image acutance. Then, through convolving with Gaussian filters, a hyperspectral hand image was preprocessed to obtain different TPAVs. Afterwards, based on local feature representation, the nearest neighbor method was used for matching. The experiments were conducted on hyperspectral dorsal hand vein (HDHV) and hyperspectral palm vein (HPV) databases containing 53 bands. The results that achieved the best performance were those where image acutance was adjusted to the optimal range. On average, the samples with adjusted acutance compared to the original improved by a recognition rate (RR) of 29.5% and 45.7% for the HDHV and HPV datasets, respectively. Furthermore, our method was validated on the PolyU multispectral palm print database producing similar results to that of the hyperspectral. From this we can conclude that image acutance plays an important role in hyperspectral hand biometrics.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2382-2385 ◽  
Author(s):  
Lin Lin Fan ◽  
Hui Ma ◽  
Ke Jun Wang ◽  
Yong Liang Shen ◽  
Ying Shi ◽  
...  

Finger vein recognition refers to a recent biometric technique which exploits the vein patterns in the human finger to identify individuals. Finger vein recognition faces a number of challenges. One critical issue is the performance of finger vein recognition system. To overcome this problem, a finger vein recognition algorithm based on one kind of subspace projection technology is presented. Firstly, we use Kapur entropy threshold method to achieve the purpose of intercepting region of finger under contactless mode. Then the finger vein features were extracted by 2DPCA method. Finally, we used of nearest neighbor distance classifier for matching. The results indicate that the algorithm has good recognition performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Bang Chao Liu ◽  
Shan Juan Xie ◽  
Dong Sun Park

As a promising biometric system, finger vein identification has been studied widely and many relevant researches have been proposed. However, it is hard to extract a satisfied finger vein pattern due to the various vein thickness, illumination, low contrast region, and noise existing. And most of the feature extraction algorithms rely on high-quality finger vein database and take a long time for a large dimensional feature vector. In this paper, we proposed two block selection methods which are based on the estimate of the amount of information in each block and the contribution of block location by looking at recognition rate of each block position to reduce feature extraction time and matching time. The specific approach is to find out some local finger vein areas with low-quality and noise, which will be useless for feature description. Local binary pattern (LBP) descriptors are proposed to extract the finger vein pattern feature. Two finger vein databases are taken to test our algorithm performance. Experimental results show that proposed block selection algorithms can reduce the feature vector dimensionality in a large extent.


Author(s):  
Liping Zhou ◽  
Mingwei Gao ◽  
Chun He

At present, the correct recognition rate of face recognition algorithm is limited under unconstrained conditions. To solve this problem, a face recognition algorithm based on deep learning under unconstrained conditions is proposed in this paper. The algorithm takes LBP texture feature as the input data of deep network, and trains the network layer by layer greedily to obtain optimized parameters of network, and then uses the trained network to predict the test samples. Experimental results on the face database LFW show that the proposed algorithm has higher correct recognition rate than some traditional algorithms under unconstrained conditions. In order to further verify its effectiveness and universality, this algorithm was also tested in YALE and YALE-B, and achieved a high correct recognition rate as well, which indicated that the deep learning method using LBP texture feature as input data is effective and robust to face recognition.


Sign in / Sign up

Export Citation Format

Share Document