THE STUDY ON NOVEL MICROELECTRODE ARRAY CHIPS FOR THE DETECTION OF HEAVY METALS IN WATER POLLUTION

2012 ◽  
Vol 05 (01) ◽  
pp. 1150002 ◽  
Author(s):  
HUI-XIN ZHAO ◽  
WEI CAI ◽  
DA HA ◽  
HAO WAN ◽  
PING WANG

Qualitative and quantitative analysis of trace heavy metals in aqueous environment are rapidly assuming significance along with the rapid development of industry. In this paper, gold microelectrode array (MEA) plated with mercury film was used for simultaneous voltammetric detection of zinc, cadmium, lead and copper ions in water. The electrochemical behavior and the actual surface area of the MEA were investigated by cyclic voltammetry in K3[Fe(CN)6] . Electrochemical impedance spectrum (EIS) was utilized to examine the deposition of mercury on the electrode surface. Based on anodic stripping voltammetry, mercury film– Au MEA was applied to the detection of heavy metals in artificial analyte, where good calibrate linearity was obtained for cadmium, lead and copper ions, but with zinc exhibiting poor linearity.

2007 ◽  
Vol 19 (16) ◽  
pp. 1719-1726 ◽  
Author(s):  
Leandro M. de Carvalho ◽  
Paulo C. do Nascimento ◽  
Andrea Koschinsky ◽  
Michael Bau ◽  
Raquel F. Stefanello ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 772
Author(s):  
Ivana Škugor Rončević ◽  
Marijo Buzuk ◽  
Maša Buljac ◽  
Nives Vladislavić

By simple modification of a GC electrode with biofunctional material, hydroxyapatite (HAp), an efficient electroanalytical tool, was designed and constructed. Modification of the GC surface includes two steps in synthesis: electrochemical deposition and chemical conversion. The properties, structure, and morphology of a nanosized material formed on a surface and absorbability were studied by electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy and scanning electron microscopy with energy-dispersive spectroscopy analysis. Numerous methods in this work confirmed that the developed method for controlled HAp deposition results in a HAp open structure and uniform morphology, which is capable of the selective absorption of the target species. The main goal of this study was the possibility of using a HAp-modified electrode for the fast screening of copper, cadmium, and lead content in honey and sugar samples. The electrochemical behavior and potential of the electroanalytical determination of heavy metals using the HAp/GC electrode were studied using cyclic voltammetry and square wave anodic stripping voltammetry. The HAp/GC electrode exhibited great performance in the determination of heavy metals, based on the reduction of target metals, because of the high absorbability of the HAp film and the electroanalytical properties of GC. A linear response between 10 and 1000 μg/L for Cu and Pb and 1 and 100 μg/L for Cd, with an estimated detection limit of 2.0, 10.0, and 0.9 μg/L, respectively, was obtained.


Author(s):  
Ngo The Cuong ◽  
Tran Hoan Quoc ◽  
Svetlana Vasilievna Zolotokopova

The article focuses on the study of change of containing heavy metals (zinc, copper, iron, cadmium, lead, arsenic) in the abiotic and biotic components of the Serepok river (Vietman) influenced by wastewater discharge from industrial areas. Heavy metal content was determined in the river water and bottom sediments in the four zones: above and within the boundaries of industrial regions Xoa Phu and Tam Thang and in two water reservoirs situated below the boundaries of those industrial areas. Tilapia Galilean ( Sarotherodon galilaeus ), Hemibagrus ( Hemibagrus ), and sazan ( Cyprinus carpio ) caught in these areas were the hydrobionts under study in which liver, gills, skeleton and muscles accumulation of heavy metals was detected. In the organs of fish caught in the river within industrial region, heavy metals concentration was 3-7 times higher. The greatest concentration of heavy metals was found in the liver and gills of fish caught in the boundaries of industrial regions, the least concentration was in the muscles. In most cases, significant correlation between heavy metal concentration in organs of fishes and in river water, bottom sediments has been revealed.


2019 ◽  
Vol 15 (5) ◽  
pp. 567-574
Author(s):  
Huck Jun Hong ◽  
Suw Young Ly

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step. Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems. Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX. Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.


Author(s):  
Larissa Pinto Silva ◽  
Náira Da Silva Campos ◽  
Thalles Pedrosa Lisboa ◽  
Lucas Vinícius de Faria ◽  
Maria Auxiliadora Costa Matos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document