scholarly journals Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.

2020 ◽  
Vol 8 (4) ◽  
pp. 505 ◽  
Author(s):  
Muhammad Faheem ◽  
Sadaf Shabbir ◽  
Jun Zhao ◽  
Philip G Kerr ◽  
Nasrin Sultana ◽  
...  

Cadmium (Cd), chromium (Cr) and lead (Pb) are heavy metals that have been classified as priority pollutants in aqueous environment while methane-oxidizing bacteria as a biofilter arguably consume up to 90% of the produced methane in the same aqueous environment before it escapes into the atmosphere. However, the underlying kinetics and active methane oxidizers are poorly understood for the hotspot of epipelon that provides a unique micro-ecosystem containing diversified guild of microorganisms including methane oxidizers for potential bioremediation of heavy metals. In the present study, the Pb2+, Cd2+and Cr6+ bioremediation potential of epipelon biofilm was assessed under both high (120,000 ppm) and near-atmospheric (6 ppm) methane concentrations. Epipelon biofilm demonstrated a high methane oxidation activity following microcosm incubation amended with a high concentration of methane, accompanied by the complete removal of 50 mg L−1 Pb2+ and 50 mg L−1 Cd2+ (14 days) and partial (20%) removal of 50 mg L−1 Cr6+ after 20 days. High methane dose stimulated a faster (144 h earlier) heavy metal removal rate compared to near-atmospheric methane concentrations. DNA-based stable isotope probing (DNA-SIP) following 13CH4 microcosm incubation revealed the growth and activity of different phylotypes of methanotrophs during the methane oxidation and heavy metal removal process. High throughput sequencing of 13C-labelled particulate methane monooxygenase gene pmoA and 16S rRNA genes revealed that the prevalent active methane oxidizers were type I affiliated methanotrophs, i.e., Methylobacter. Type II methanotrophs including Methylosinus and Methylocystis were also labeled only under high methane concentrations. These results suggest that epipelon biofilm can serve as an important micro-environment to alleviate both methane emission and the heavy metal contamination in aqueous ecosystems with constant high methane fluxes.


2020 ◽  
Vol 4 (2) ◽  
pp. 33-25
Author(s):  
Queency P. Padida ◽  
Rolando V. Maningas ◽  
Christian Paul P. dela Cruz ◽  
Lustina P. Lapie ◽  
Nilda S. Alforja

Laguna de Bay is one of the country’s major lakes, providing a third of the fish consumed by Metro Manila’s 16 million residents. It also provides support for agriculture, industry, and hydropower generation, as well as providing a welcome respite for many Filipinos. However, because of the lake’s importance, it is threatened by a variety of issues, including pollution. Heavy metals such as mercury and lead are present in high concentrations in the lake. And these heavy metals may persist in fish, water, air and the human body. As a result, an adsorption technique for heavy metal removal in an aqueous solution was investigated. As an adsorbent, the produced chitosan from crustacean waste shells was employed. The study’s parameters were contact time, adsorbent quantity, and pH. Results showed that 0.5 g of chitosan has a higher absorption rate of 99% in 500 mg/L solutions compared to 1.0 g of chitosan with an adsorption rate of 98%. In terms of contact time, 60 minutes showed almost 100% adsorption rate while 120 minutes was 98%. With increasing pH, the amount of metal adsorption rises. This developed chitosan from crustacean waste shells indicates high capacity as adsorbent materials for heavy metals. As a result, it appears to be a viable material for water treatment.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2481
Author(s):  
Fahad M. Almutairi ◽  
Haddad A. El Rabey ◽  
Adel I. Alalawy ◽  
Alzahraa A. M. Salama ◽  
Ahmed A. Tayel ◽  
...  

Biopolymers and nanomaterials are ideal candidates for environmental remediation and heavy metal removal. As hexavalent chromium (Cr6+) is a hazardous toxic pollutant of water, this study innovatively aimed to synthesize nanopolymer composites and load them with phycosynthesized Fe nanoparticles for the full Cr6+ removal from aqueous solutions. The extraction of chitosan (Cht) from prawn shells and alginate (Alg) from brown seaweed (Sargassum linifolium) was achieved with standard characteristics. The tow biopolymers were combined and cross-linked (via microemulsion protocol) to generate nanoparticles from their composites (Cht/Alg NPs), which had a mean diameter of 311.2 nm and were negatively charged (−23.2 mV). The phycosynthesis of iron nanoparticles (Fe-NPs) was additionally attained using S. linifolium extract (SE), and the Fe-NPs had semispherical shapes with a 21.4 nm mean diameter. The conjugation of Cht/Alg NPs with SE-phycosynthesized Fe-NPs resulted in homogenous distribution and stabilization of metal NPs within the polymer nanocomposites. Both nanocomposites exhibited high efficiency as adsorbents for Cr6+ at diverse conditions (e.g., pH, adsorbent dose, contact time and initial ion concentration) using batch adsorption evaluation; the most effectual conditions for adsorption were a pH value of 5.0, adsorbent dose of 4 g/L, contact time of 210 min and initial Cr6+ concentration of 75 ppm. These factors could result in full removal of Cr6+ from batch experiments. The composited nanopolymers (Cht/Alg NPs) incorporated with SE-phycosynthesized Fe-NPs are strongly recommended for complete removal of Cr6+ from aqueous environments.


2020 ◽  
Vol 997 ◽  
pp. 113-120
Author(s):  
Hafizah Binti Naihi

The extensive use of heavy metals such as copper in various industries has discharged a large amount of the metals into the environment which is toxic at higher concentrations. The use of low-cost agricultural waste of biological origin such as tea waste may be an economic solution to this problem. Tea waste is among the potential material to be developed as an adsorbent for heavy metal ions. Tea waste contains cellulose and lignin which have been reported having an excellent metal binding capacity. This study aims to use tea waste for the removal of Cu2+ ions. The effect of variation in different parameters like initial concentration of Cu2+ ions in solution, adsorbent dosage and contact time were investigated using batch adsorption method. The adsorbent, tea waste was characterized using a compound microscope and FTIR spectroscopy. Experimental results showed that the maximum removal of the copper ion by tea waste at optimum condition (pH 7, 60 min. contact time, 0.8 g adsorbent dose and 0.7 M concentration) is 74%. The adsorbent prepared from tea waste is efficient and it can be conveniently employed as a low-cost alternative in the treatment of wastewater for heavy metal removal.


2021 ◽  
Vol 287 ◽  
pp. 04005
Author(s):  
Khee Chung Hui ◽  
Norashikin Ahmad Kamal ◽  
Nonni Soraya Sambudi ◽  
Muhammad Roil Bilad

In this work, magnetic hydroxyapatite or hydroxyapatite-iron (III) oxide (HAp-Fe3O4) composite was used as the adsorbent of heavy metals and the performance was evaluated using the batch test. The presence of heavy metals in the effluent from wastewater discharge can be toxic to many organisms and can even lead to eye burns. Therefore, hydroxyapatite synthesized from the chemical precipitation of calcium nitrate tetrahydrate and diammonium hydrogen phosphate solutions is used to remove heavy metal in aqueous media. Magnetic properties of Fe3O4 can help prevent formation of secondary pollutants caused by the loss of adsorbent. The synthesized HAp-Fe3O4 can remove cadmium, zinc and lead effectively, which is up to 90% removal. Reusability study shows that the adsorbent could retain heavy metal ions even after four cycles. The percentage removal of heavy metals maintains at around 80% after four times of usage. The composite of HAp-Fe3O4 demonstrates good performance and stability which is beneficial for heavy metal removal in the future.


2021 ◽  
Vol 411 ◽  
pp. 93-105
Author(s):  
Rafeah Wahi ◽  
Showkat Ahmad Bhawani ◽  
Zainab Ngaini ◽  
Nur Farhana Yusop ◽  
Nur Hanani Hasana

The use of agricultural by-products has been widely studied to develop effective and inexpensive adsorbent for heavy metal removal. In this study, sago (M.sagu) fly ash (FA) was chemically modified to afford an operational adsorbent for Pb (II) elimination from water. Chemical modification was carried out via acid-base treatment using NaOH and HCl. The chemically modified fly ash (MFA) was characterized via proximate, surface morphology, and functional groups' surface area analyses. The effects of adsorption parameters, namely, Pb (II) initial concentration, sorbent dosage and contact time on the eradication of Pb (II) by MFA was analyzed in batch experiments with Langmuir and Freundlich isotherms. Optimization of Pb (II) removal by MFA was studied via response surface methodology (RSM) approach. Results revealed that chemical modification has successfully enhanced the adsorptive properties of MFA (BET surface area: 231.4 m2/g, fixed carbon: 55.83%). MFA exhibits better Pb (II) removal efficiency (90.8%) compared to FA (63.6%) at the following adsorption condition: Pb (II) initial concentration (5 ppm), contact time (30 min) and agitation speed (150 rpm). The adsorption of Pb (II) by FA and MFA fitted well with Freundlich isotherm (R2>0.9). RSM study suggested that the optimum Pb (II) removal was 99.4% at the following conditions: Pb (II) initial concentration (20 ppm), contact time (2 h) and sorbent dosage (0.6 g/50 mL). The results concluded the potential optimum operational condition for Pb (II) removal from aqueous environment by MFA as a low cost adsorbent, at larger scale.


1997 ◽  
Vol 35 (7) ◽  
pp. 63-70 ◽  
Author(s):  
Shang-Lien Lo ◽  
Hung-Te Jeng ◽  
Chin-Hsing Lai

This study was conducted to develop a process for coating hydrated iron oxide on the surface of quartz sand to utilize the adsorbent properties of the coating and the filtration properties of the sand. Three coating parameters were investigated: pH, Fe concentration at which iron oxide was prepared, and the coating temperature. A Scanning Electron Microscope (SEM) and X-Ray Diffractometer (XRD) were used to observe the surface properties of the coated layer. Acid resistance was used to evaluate the attachment strength of the coated layer. Batch adsorption tests were performed to compare the effects of each coating parameter on the adsorption of heavy metals on the coated layer. Energy Dispersive Analysis of X-ray (EDAX) was used for characterizing metal adsorption sites on the iron-coated sand. The results indicated that the coated sand had more pores and higher specific surface area because of the attachment of iron oxide. The coated sand produced at higher pH(coating) had better adsorption efficiencies of metals but had worse acid resistance. A high-temperature coating process enhanced the stability of the oxide coatings. Comparing heavy metal removal by adsorption on iron-coated sand and chemical precipitation, adsorption was shown to be capable of removing heavy metals over a wider pH range and to much lower levels than precipitation. The results from EDAX analysis showed that copper ions were chemisorbed on the surface of iron-coated sand.


2020 ◽  
Vol 4 (2) ◽  
pp. 33-35
Author(s):  
Queency P. Padida ◽  
Rolando V. Maningas ◽  
Christian Paul P. dela Cruz ◽  
Lustina P. Lapie ◽  
Nilda S. Alforja

Laguna de Bay is one of the country's major lakes, providing a third of the fish consumed by Metro Manila's 16 million residents. It also provides support for agriculture, industry, and hydropower generation, as well as providing a welcome respite for many Filipinos. However, because of the lake's importance, it is threatened by a variety of issues, including pollution. Heavy metals such as mercury and lead are present in high concentrations in the lake. And these heavy metals may persist in fish, water, air and the human body. As a result, an adsorption technique for heavy metal removal in an aqueous solution was investigated. As an adsorbent, the produced chitosan from crustacean waste shells was employed. The study's parameters were contact time, adsorbent quantity, and pH. Results showed that 0.5 g of chitosan has a higher absorption rate of 99% in 500 mg/L solutions compared to 1.0 g of chitosan with an adsorption rate of 98%. In terms of contact time, 60 minutes showed almost 100% adsorption rate while 120 minutes was 98%. With increasing pH, the amount of metal adsorption rises. This developed chitosan from crustacean waste shells indicates high capacity as adsorbent materials for heavy metals. As a result, it appears to be a viable material for water treatment.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


Sign in / Sign up

Export Citation Format

Share Document