SOME HIGH ORDER ITERATIVE METHODS FOR NONLINEAR EQUATIONS BASED ON THE MODIFIED HOMOTOPY PERTURBATION METHODS

2010 ◽  
Vol 03 (03) ◽  
pp. 395-408
Author(s):  
Bilian Chen ◽  
Yajun Xie ◽  
Changfeng Ma

In this paper, we present some efficient iterative methods for solving nonlinear equation (systems of nonlinear equations, respectively) by using modified homotopy perturbation methods. We also discuss the convergence criteria of the present methods. Some numerical examples are given to illustrate the performance and efficiency of the proposed methods.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Farooq Ahmed Shah

We use a new modified homotopy perturbation method to suggest and analyze some new iterative methods for solving nonlinear equations. This new modification of the homotopy method is quite flexible. Various numerical examples are given to illustrate the efficiency and performance of the new methods. These new iterative methods may be viewed as an addition and generalization of the existing methods for solving nonlinear equations.


2019 ◽  
Vol 4 (2) ◽  
pp. 351-364 ◽  
Author(s):  
M. Salai Mathi Selvi ◽  
L. Rajendran

AbstractIn this paper, an accurate and efficient Chebyshev wavelet-based technique is successfully employed to solve the nonlinear oscillation problems. Numerical examples are also provided to illustrate the efficiency and performance of these methods. Homotopy perturbation methods may be viewed as an extension and generalization of the existing methods for solving nonlinear equations. In addition, the use of Chebyshev wavelet is found to be simple, flexible, accurate, efficient and less computational cost. Our analytical results are compared with simulation results and found to be satisfactory.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


2018 ◽  
Vol 41 (17) ◽  
pp. 7263-7282 ◽  
Author(s):  
Cory L. Howk ◽  
José L. Hueso ◽  
Eulalia Martínez ◽  
Carles Teruel

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Santiago Artidiello ◽  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order, adding only one functional evaluation of the vectorial nonlinear function. We perform numerical tests to compare the proposed methods with other schemes in the literature and test their effectiveness on specific nonlinear problems. Moreover, some real basins of attraction are analyzed in order to check the relation between the order of convergence and the set of convergent starting points.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Eisa Al-Said ◽  
Muhammad Waseem

We suggest and analyze some new iterative methods for solving the nonlinear equationsf(x)=0using the decomposition technique coupled with the system of equations. We prove that new methods have convergence of fourth order. Several numerical examples are given to illustrate the efficiency and performance of the new methods. Comparison with other similar methods is given.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
S. Amat ◽  
C. Bermúdez ◽  
S. Busquier ◽  
M. J. Legaz ◽  
S. Plaza

This paper is devoted to the study of a class of high-order iterative methods for nonlinear equations on Banach spaces. An analysis of the convergence under Kantorovich-type conditions is proposed. Some numerical experiments, where the analyzed methods present better behavior than some classical schemes, are presented. These applications include the approximation of some quadratic and integral equations.


2018 ◽  
Vol 14 (1) ◽  
pp. 179-187
Author(s):  
Jivandhar Jnawali ◽  
Chet Raj Bhatta

 The main purpose of this paper is to derive two higher order iterative methods for solving nonlinear equations as variants of Mir, Ayub and Rafiq method. These methods are free from higher order derivatives. We obtain these methods by amalgamating Mir, Ayub and Rafiq method with standard secant method and modified secant method given by Amat and Busquier. The order of convergence of new variants are four and six. Also, numerical examples are given to compare the performance of newly introduced methods with the similar existing methods. 2010 AMS Subject Classification: 65H05 Journal of the Institute of Engineering, 2018, 14(1): 179-187


Sign in / Sign up

Export Citation Format

Share Document