On Ramanujan's general theta function and a generalization of the Borweins' cubic theta functions

2015 ◽  
Vol 08 (01) ◽  
pp. 1550002
Author(s):  
Chandrashekar Adiga ◽  
Nasser Abdo Saeed Bulkhali

The Borwein brothers have introduced and studied three cubic theta functions. Many generalizations of these functions have been studied as well. In this paper, we introduce a new generalization of these functions and establish general formulas that are connecting our functions and Ramanujan's general theta function. Many identities found in the literature follow as a special case of our identities. We further derive general formulas for certain products of theta functions.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2012 ◽  
Vol 6 (1) ◽  
pp. 114-125 ◽  
Author(s):  
Jun-Ming Zhu

We prove a general alternate circular summation formula of theta functions, which implies a great deal of theta-function identities. In particular, we recover several identities in Ramanujan's Notebook from this identity. We also obtain two formulaes for (q; q)2n?.


1962 ◽  
Vol 20 ◽  
pp. 1-27 ◽  
Author(s):  
Hisasi Morikawa

We shall denote by the Z-module of integral vectors of dimension r, by T a symmetric complex matrix with positive definite imaginary part and by g the variable vector. If we put and the fundamental theta function is expressed in the form: as a series in q and u. Other theta functions in the classical theory are derived from the fundamental theta function by translating the origin and making sums and products, so these theta functions are also expressed in the form: as series of q and u. Moreover the coefficients in the relations of theta functions are also expressed in the form: as series in q.


Author(s):  
Hannah Burson

We introduce combinatorial interpretations of the coefficients of two second-order mock theta functions. Then, we provide a bijection that relates the two combinatorial interpretations for each function. By studying other special cases of the multivariate identity proved by the bijection, we obtain new combinatorial interpretations for the coefficients of Watson’s third-order mock theta function [Formula: see text] and Ramanujan’s third-order mock theta function [Formula: see text].


Author(s):  
Amanda Folsom

In 1920, Ramanujan studied the asymptotic differences between his mock theta functions and modular theta functions, as [Formula: see text] tends towards roots of unity singularities radially from within the unit disk. In 2013, the bounded asymptotic differences predicted by Ramanujan with respect to his mock theta function [Formula: see text] were established by Ono, Rhoades, and the author, as a special case of a more general result, in which they were realized as special values of a quantum modular form. Our results here are threefold: we realize these radial limit differences as special values of a partial theta function, provide full asymptotic expansions for the partial theta function as [Formula: see text] tends towards roots of unity radially, and explicitly evaluate the partial theta function at roots of unity as simple finite sums of roots of unity.


2012 ◽  
Vol 08 (08) ◽  
pp. 1977-2002 ◽  
Author(s):  
ZHI-GUO LIU

Two pairs of inverse relations for elliptic theta functions are established with the method of Fourier series expansion, which allow us to recover many classical results in theta functions. Many nontrivial new theta function identities are discovered. Some curious trigonometric identities are derived.


1930 ◽  
Vol 26 (4) ◽  
pp. 453-457
Author(s):  
W. G. Welchman

1. It is known, from the theory of the Riemann theta-functions, that the canonical series of a general curve of genus p has 2P−1 (2P − 1) sets which consist of p − 1. points each counted twice. Taking as projective model of the curve the canonical curve of order 2p − 2 in space of p− 1 dimensions, whose canonical series is given by the intersection of primes, we have the number of contact primes of the curve. The 28 bitangents of a plane quartic curve, the canonical curve of genus 3, have been studied in detail since the days of Plücker. The number, 120, of tritangent planes of the sextic curve of intersection of a quadric and a cubic surface, the canonical curve of genus 4, has been obtained directly by correspondence arguments by Enriques. Enriques also remarks that the general formula 2P−1 (2p −1) is a special case of the formula of de Jonquières, which was proved, by correspondence methods, by Torelli§.


1984 ◽  
Vol 96 ◽  
pp. 113-126 ◽  
Author(s):  
Hisasi Morikawa

Let τ = (τij) be a symmetric complex g = g matrix with the positive definite imaginary part. A theta function of level n means an entire function f(z) in g complex variables z = (zl …, zg) satisfying the difference relations:


2011 ◽  
Vol 07 (07) ◽  
pp. 1945-1957 ◽  
Author(s):  
TIM HUBER

We show that the cubic theta functions satisfy two distinct coupled systems of nonlinear differential equations. The resulting relations are analogous to Ramanujan's differential equations for Eisenstein series on the full modular group. We deduce the cubic analogs presented here from trigonometric series identities arising in Ramanujan's original paper on Eisenstein series. Several consequences of these differential equations are established, including a short proof of a famous cubic theta function identity derived by J. M. Borwein and P. B. Borwein.


2008 ◽  
Vol 04 (06) ◽  
pp. 1027-1042 ◽  
Author(s):  
SHARON ANNE GARTHWAITE

In 1920, Ramanujan wrote to Hardy about his discovery of the mock theta functions. In the years since, there has been much work in understanding the transformation properties and asymptotic nature of these functions. Recently, Zwegers proved a relationship between mock theta functions and vector-valued modular forms, and Bringmann and Ono used the theory of Maass forms and Poincaré series to prove a conjecture of Andrews, yielding an exact formula for the coefficients of the f(q) mock theta function. Here we build upon these results, using the theory of vector-valued modular forms and Poincaré series to prove an exact formula for the coefficients of the ω(q) mock theta function.


Sign in / Sign up

Export Citation Format

Share Document