On the decay of the smallest singular value of submatrices of rectangular matrices

2016 ◽  
Vol 09 (04) ◽  
pp. 1650075
Author(s):  
Yang Liu ◽  
Yang Wang

In this paper, we study the decay of the smallest singular value of submatrices that consist of bounded column vectors. We find that the smallest singular value of submatrices is related to the minimal distance of points to the lines connecting other two points in a bounded point set. Using a technique from integral geometry and from the perspective of combinatorial geometry, we show the decay rate of the minimal distance for the sets of points if the number of the points that are on the boundary of the convex hull of any subset is not too large, relative to the cardinality of the set. In the numeral or computational aspect, we conduct some numerical experiments for many sets of points and analyze the smallest distance for some extremal configurations.

2019 ◽  
Vol 22 (04) ◽  
pp. 1950027
Author(s):  
O. Guédon ◽  
A. E. Litvak ◽  
K. Tatarko

Let [Formula: see text] be an [Formula: see text] random matrix with independent entries and such that in each row entries are i.i.d. Assume also that the entries are symmetric, have unit variances, and satisfy a small ball probabilistic estimate uniformly. We investigate properties of the corresponding random polytope [Formula: see text] in [Formula: see text] (the absolute convex hull of rows of [Formula: see text]). In particular, we show that [Formula: see text] where [Formula: see text] depends only on parameters in small ball inequality. This extends results of [A. E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Adv. Math. 195 (2005) 491–523] and recent results of [F. Krahmer, C. Kummerle and H. Rauhut, A quotient property for matrices with heavy-tailed entries and its application to noise-blind compressed sensing, preprint (2018); arXiv:1806.04261]. This inclusion is equivalent to so-called [Formula: see text]-quotient property and plays an important role in compressed sensing (see [F. Krahmer, C. Kummerle and H. Rauhut, A quotient property for matrices with heavy-tailed entries and its application to noise-blind compressed sensing, preprint (2018); arXiv:1806.04261] and references therein).


2021 ◽  
Vol 9 (1) ◽  
pp. 103-111
Author(s):  
Maryam Shams Solary ◽  
Alexander Kovačec ◽  
Stefano Serra Capizzano

Abstract Let L be the infinite lower triangular Toeplitz matrix with first column (µ, a 1, a 2, ..., ap , a 1, ..., ap , ...) T and let D be the infinite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. Bünger and Rump have shown that if p = 2 and certain linear inequalities between the parameters µ, a 1, a 2, are satisfied, then the singular values of any finite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for µ, a 1, ..., ap . It depends on the asymptotics in µ of the l 2-norm of certain sequences defined by linear recurrences, in which these parameters enter. We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.


2014 ◽  
Vol 602-605 ◽  
pp. 3104-3106
Author(s):  
Shao Hua Liu ◽  
Jia Hua Zhang

This paper introduced points and directed line segment relation judgment method, the characteristics of generation and Graham method using the original convex hull generation algorithm of convex hull discrete points of the convex hull, an improved algorithm for planar discrete point set is proposed. The main idea is to use quadrilateral to divide planar discrete point set into five blocks, and then by judgment in addition to the four district quadrilateral internally within the point is in a convex edge. The result shows that the method is relatively simple program, high computational efficiency.


2012 ◽  
Vol 433-440 ◽  
pp. 3146-3151 ◽  
Author(s):  
Fan Wu Meng ◽  
Chun Guang Xu ◽  
Juan Hao ◽  
Ding Guo Xiao

The search of sphericity evaluation is a time-consuming work. The minimum circumscribed sphere (MCS) is suitable for the sphere with the maximum material condition. An algorithm of sphericity evaluation based on the MCS is introduced. The MCS of a measured data point set is determined by a small number of critical data points according to geometric criteria. The vertices of the convex hull are the candidates of these critical data points. Two theorems are developed to solve the sphericity evaluation problems. The validated results show that the proposed strategy offers an effective way to identify the critical data points at the early stage of computation and gives an efficient approach to solve the sphericity problems.


Sign in / Sign up

Export Citation Format

Share Document