PREPARATION OF THREE-DIMENSIONAL GRAPHENE NETWORKS FOR USE AS ANODE OF LITHIUM ION BATTERIES

2013 ◽  
Vol 06 (06) ◽  
pp. 1350063 ◽  
Author(s):  
HAI LI ◽  
CHUNXIANG LU

The three-dimensional (3D) graphene networks have been prepared by annealing the mixture of graphene oxide and SiO 2 nanoparticles and then etching SiO 2. The obtained material was characterized by X-ray diffraction, scanning electron microscope and transmission electron microscopy, which revealed that 3D networks consisting of crumpled graphene nanosheets were preserved after the removal of SiO 2. When used as anode material of lithium ion batteries, the graphene networks showed a reversible capacity of 610.9 mAh/g at a current density of 50 mA/g after 50 cycles and excellent rate capability of 291.5 mAh/g at a current density of 5000 mA/g. The good electrochemical performance can be attributed to the network structure, which enables graphene to electrochemically absorb more lithium ions and significantly improve the electrical conductivity of electrode. The graphene networks have the potential applications in ultracapacitor and catalyst supports.

RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16936-16945 ◽  
Author(s):  
Wei Zhang ◽  
Jinzhi Sheng ◽  
Jie Zhang ◽  
Ting He ◽  
Lin Hu ◽  
...  

N-Doped carbon network encapsulated MnO nanorods demonstrate 95% capacity retention at a current density of 4000 mA g−1for 3000 cycles. In this case, almost no pulverization or size variation of the nanorods can be observed.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1115
Author(s):  
Ying Xie ◽  
Xiang Xiong ◽  
Kai Han

Ammonium molybdate tetrahydrate ((NH4)6Mo7O24) (AMT) is commonly used as the precursor to synthesize Mo-based oxides or sulfides for lithium ion batteries (LIBs). However, the electrochemical lithium storage ability of AMT itself is unclear so far. In the present work, AMT is directly examined as a promising anode material for Li-ion batteries with good capacity and cycling stability. To further improve the electrochemical performance of AMT, AMT/polydopamine (PDA) composite was simply synthesized via recrystallization and freeze drying methods. Unlike with block shape for AMT, the as-prepared AMT/PDA composite shows flake morphology. The initial discharge capacity of AMT/PDA is reached up to 1471 mAh g−1. It delivers a reversible discharge capacity of 702 mAh g−1 at a current density of 300 mA g−1, and a stable reversible capacity of 383.6 mA h g−1 is retained at a current density of 0.5 A g−1 after 400 cycles. Moreover, the lithium storage mechanism is fully investigated. The results of this work could potentially expand the application of AMT and Mo-based anode for LIBs.


RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101008-101015 ◽  
Author(s):  
Yunhe Sun ◽  
Long Fan ◽  
Wangyu Li ◽  
Ying Pang ◽  
Jun Yang ◽  
...  

SNs@SiOx/C composite delivers a reversible capacity of 779 mA h g−1 over 300 cycles at a current density of 400 mA g−1.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850139 ◽  
Author(s):  
Hao Wen ◽  
Changdong Shi ◽  
Yuanrui Gao ◽  
Hongren Rong ◽  
Yanyong Sha ◽  
...  

Co3O4 nanocrystals have been synthesized via an ordinary one-step calcination of a cobalt-based 2D coordination polymer [Co(tfbdc)(4,4[Formula: see text]-bpy)(H2O)2]. As an anode material for lithium-ion batteries, the obtained Co3O4 nanocrystals exhibit high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the Co3O4 nanocrystals maintains 713[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] after 50 cycles at a current density of 50[Formula: see text]mA[Formula: see text]g[Formula: see text]. Our results confirm that searching for metal oxides nanomaterials used as anode materials of lithium ion batteries via the calcinations of 2D coordination polymer is a new route.


2015 ◽  
Vol 17 (31) ◽  
pp. 20061-20065 ◽  
Author(s):  
Yanjun Zhang ◽  
Li Jiang ◽  
Chunru Wang

A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source, which exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (53) ◽  
pp. 42922-42930 ◽  
Author(s):  
Diganta Saikia ◽  
Tzu-Hua Wang ◽  
Chieh-Ju Chou ◽  
Jason Fang ◽  
Li-Duan Tsai ◽  
...  

Ordered mesoporous carbons CMK-3 and CMK-8 with different mesostructures are evaluated as anode materials for lithium-ion batteries. CMK-8 possesses higher reversible capacity, better cycling stability and rate capability than CMK-3.


Sign in / Sign up

Export Citation Format

Share Document