WS2–3D graphene nano-architecture networks for high performance anode materials of lithium ion batteries

RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.

RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2015 ◽  
Vol 3 (16) ◽  
pp. 8683-8692 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared pineapple-shaped ZCO with a porous nanostructure shows a high specific capacity, superior rate capability and excellent cycling stability when used as an anode material for LIBs.


2016 ◽  
Vol 40 (10) ◽  
pp. 8202-8205 ◽  
Author(s):  
Yourong Wang ◽  
Kai Xie ◽  
Xu Guo ◽  
Wei Zhou ◽  
Guangsen Song ◽  
...  

A mesoporous nano-SiO2 anode delivers high specific capacity, good cycling stability and high Coulombic efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (103) ◽  
pp. 84711-84717 ◽  
Author(s):  
Rencheng Jin ◽  
Dongmei Liu ◽  
Chunping Liu ◽  
Gang Liu

Hierarchical NiCo2S4 hollow spheres have been fabricated, which exhibit a high specific capacity, good rate capability and stable cycling performance.


RSC Advances ◽  
2020 ◽  
Vol 10 (54) ◽  
pp. 32609-32615 ◽  
Author(s):  
Haihong Xiao ◽  
Guoqing Ma ◽  
Junyu Tan ◽  
Shuai Ru ◽  
Zhaoquan Ai ◽  
...  

ZnCo2O4 has become one of the most widely used anode materials due to its good specific capacity, cost-efficiency, high thermal stability and environmental benignity.


Author(s):  
Xingyuan Zhang ◽  
Jian-Gan Wang ◽  
Huanyan Liu ◽  
Hongzhen Liu ◽  
Bingqing Wei

Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.


2015 ◽  
Vol 3 (41) ◽  
pp. 20673-20680 ◽  
Author(s):  
Wenwu Li ◽  
Di Chen ◽  
Guozhen Shen

Single-crystal Ca2Ge7O16 nanowires encapsulated within graphene sheets exhibit high specific capacity, good cyclability, and excellent rate capability as anodes for lithium ion batteries.


2014 ◽  
Vol 7 (8) ◽  
pp. 2689-2696 ◽  
Author(s):  
Yuming Chen ◽  
Xiaoyan Li ◽  
Xiangyang Zhou ◽  
Haimin Yao ◽  
Haitao Huang ◽  
...  

Activated N-doped hollow-tunneled graphitic carbon nanofibers with a novel architecture are excellent anode materials for lithium ion batteries, displaying a superhigh reversible specific capacity and a remarkable volumetric capacity with outstanding rate capability and good cycling stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (30) ◽  
pp. 23278-23282 ◽  
Author(s):  
Sen Nie ◽  
Chunsong Li ◽  
Hongrui Peng ◽  
Guicun Li ◽  
Kezheng Chen

Ti3+ self-doped Li4Ti5O12 (S-LTO) nanosheets exhibit high specific capacity, excellent rate performance and outstanding cycling stability.


2017 ◽  
Vol 727 ◽  
pp. 688-692
Author(s):  
Ji Xiang Chen ◽  
Dong Lin Zhao ◽  
Ze Wen Ding ◽  
Cheng Li ◽  
Xia Jun Wang ◽  
...  

Shuttle-like CuO has been synthesized by treating commercial Cu(OH)2 powder at room temperature for an appropriate time. As anode material of lithium-ion batteries, shuttle-like CuO exhibits high specific capacity, high stability, and good rate performance, superior to commercial CuO powder. The shuttle-like CuO exhibited a high specific capacitance of 456.8 mAh g-1 at a current density of 100 mAg-1 and maintained a good stability in 50 cycles, suggesting that it can be a promising candidate for lithium-ion batteries. The high specific capacitance and remarkable rate capability are promising for applications in lithium-ion batteries with both high energy and power densities.


Sign in / Sign up

Export Citation Format

Share Document