scholarly journals Dielectric Laser Accelerators: Designs, Experiments, and Applications

2016 ◽  
Vol 09 ◽  
pp. 105-126 ◽  
Author(s):  
K. P. Wootton ◽  
J. McNeur ◽  
K. J. Leedle

Novel laser-powered accelerating structures at the miniaturized scale of an optical wavelength [Formula: see text] open a pathway to high repetition rate, attosecond scale electron bunches that can be accelerated with gradients exceeding 1 GeV/m. Although the theoretical and computational study of dielectric laser accelerators dates back many decades, recently the first experimental realizations of this novel class of accelerators have been demonstrated. We review recent developments in fabrication, testing, and demonstration of these micron scale devices. In particular, prospects for applications of this accelerator technology are evaluated.

2021 ◽  
Vol 11 (13) ◽  
pp. 6058
Author(s):  
Georgia Paraskaki ◽  
Sven Ackermann ◽  
Bart Faatz ◽  
Gianluca Geloni ◽  
Tino Lang ◽  
...  

Current FEL development efforts aim at improving the control of coherence at high repetition rate while keeping the wavelength tunability. Seeding schemes, like HGHG and EEHG, allow for the generation of fully coherent FEL pulses, but the powerful external seed laser required limits the repetition rate that can be achieved. In turn, this impacts the average brightness and the amount of statistics that experiments can do. In order to solve this issue, here we take a unique approach and discuss the use of one or more optical cavities to seed the electron bunches accelerated in a superconducting linac to modulate their energy. Like standard seeding schemes, the cavity is followed by a dispersive section, which manipulates the longitudinal phase space of the electron bunches, inducing longitudinal density modulations with high harmonic content that undergo the FEL process in an amplifier placed downstream. We will discuss technical requirements for implementing these setups and their operation range based on numerical simulations.


Author(s):  
Liqiang Zhou ◽  
Chen Wei ◽  
Dongsheng Wang ◽  
Hao Chi ◽  
Le Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document