scholarly journals WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX?

2009 ◽  
Vol 01 (01) ◽  
pp. 115-120 ◽  
Author(s):  
MARIA AXENOVICH

It is well known that any two longest paths in a connected graph share a vertex. It is also known that there are connected graphs where 7 longest paths do not share a common vertex. It was conjectured that any three longest paths in a connected graph have a vertex in common. In this note we prove the conjecture for outerplanar graphs and give sufficient conditions for the conjecture to hold in general.

10.37236/1211 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Carl Droms ◽  
Brigitte Servatius ◽  
Herman Servatius

We expand on Tutte's theory of $3$-blocks for $2$-connected graphs, generalizing it to apply to infinite, locally finite graphs, and giving necessary and sufficient conditions for a labeled tree to be the $3$-block tree of a $2$-connected graph.


1996 ◽  
Vol 5 (4) ◽  
pp. 429-436 ◽  
Author(s):  
Z. Skupień

It is shown that, for every integer v < 7, there is a connected graph in which some v longest paths have empty intersection, but any v – 1 longest paths have a vertex in common. Moreover, connected graphs having seven or five minimal sets of longest paths (longest cycles) with empty intersection are presented. A 26-vertex 2-connected graph whose longest paths have empty intersection is exhibited.


Author(s):  
Qiannan Zhou ◽  
Hajo Broersma ◽  
Ligong Wang ◽  
Yong Lu

AbstractWe present two new sufficient conditions in terms of the spectral radius $$\rho (G)$$ ρ ( G ) guaranteeing that a k-connected graph G is Hamilton-connected, unless G belongs to a collection of exceptional graphs. We use the Bondy–Chvátal closure to characterize these exceptional graphs.


10.37236/7487 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Gili Golan ◽  
Songling Shan

In 1966, Gallai asked whether all longest paths in a connected graph share a common vertex. Counterexamples indicate that this is not true in general. However, Gallai's question is positive for certain well-known classes of connected graphs, such as split graphs, interval graphs, circular arc graphs, outerplanar graphs, and series-parallel graphs. A graph is $2K_2$-free if it does not contain two independent edges as an induced subgraph. In this short note, we show that, in nonempty $2K_2$-free graphs, every vertex of maximum degree is common to all longest paths. Our result implies that all longest paths in a nonempty $2K_2$-free graph have a nonempty intersection. In particular, it strengthens the result on split graphs, as split graphs are $2K_2$-free.


2019 ◽  
Vol 17 (1) ◽  
pp. 1490-1502 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Naeem Saleem

Abstract The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model, synchronize the stability, analyze the diffusion processes and find the connectivity of the graphs (networks). A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. In this paper, firstly the unique graph with a minimum algebraic connectivity is characterized in the class of connected graphs whose complements are bicyclic with exactly three cycles. Then, we find the unique graph of minimum algebraic connectivity in the class of connected graphs $\begin{array}{} {\it\Omega}^c_{n}={\it\Omega}^c_{1,n}\cup{\it\Omega}^c_{2,n}, \end{array}$ where $\begin{array}{} {\it\Omega}^c_{1,n} \end{array}$ and $\begin{array}{} {\it\Omega}^c_{2,n} \end{array}$ are classes of the connected graphs in which the complement of each graph of order n is a bicyclic graph with exactly two and three cycles, respectively.


2021 ◽  
Vol 66 (3) ◽  
pp. 3-7
Author(s):  
Anh Nguyen Thi Thuy ◽  
Duyen Le Thi

Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.


Author(s):  
Agnes D. Garciano ◽  
Maria Czarina T. Lagura ◽  
Reginaldo M. Marcelo

For a simple connected graph [Formula: see text] let [Formula: see text] be a coloring of [Formula: see text] where two adjacent vertices may be assigned the same color. Let [Formula: see text] be the sum of colors of neighbors of any vertex [Formula: see text] The coloring [Formula: see text] is a sigma coloring of [Formula: see text] if for any two adjacent vertices [Formula: see text] [Formula: see text] The least number of colors required in a sigma coloring of [Formula: see text] is the sigma chromatic number of [Formula: see text] and is denoted by [Formula: see text] A sigma coloring of a graph is a neighbor-distinguishing type of coloring and it is known that the sigma chromatic number of a graph is bounded above by its chromatic number. It is also known that for a path [Formula: see text] and a cycle [Formula: see text] where [Formula: see text] [Formula: see text] and [Formula: see text] if [Formula: see text] is even. Let [Formula: see text] the join of the graphs [Formula: see text], where [Formula: see text] or [Formula: see text] [Formula: see text] and [Formula: see text] is not an odd cycle for any [Formula: see text]. It has been shown that if [Formula: see text] for [Formula: see text] and [Formula: see text] then [Formula: see text]. In this study, we give necessary and sufficient conditions under which [Formula: see text] where [Formula: see text] is the join of copies of [Formula: see text] and/or [Formula: see text] for the same value of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text] and [Formula: see text] In this paper, we show that [Formula: see text] if and only if [Formula: see text] or [Formula: see text] is odd, [Formula: see text] is even and [Formula: see text]; and [Formula: see text] if and only if [Formula: see text] is even and [Formula: see text] We also obtain necessary and sufficient conditions on [Formula: see text] and [Formula: see text], so that [Formula: see text] for [Formula: see text] where [Formula: see text] or [Formula: see text] other than the cases [Formula: see text] and [Formula: see text]


2018 ◽  
Vol 12 (2) ◽  
pp. 297-317
Author(s):  
Encarnación Abajo ◽  
Rocío Casablanca ◽  
Ana Diánez ◽  
Pedro García-Vázquez

Let G be a connected graph with n vertices and let k be an integer such that 2 ? k ? n. The generalized connectivity kk(G) of G is the greatest positive integer l for which G contains at least l internally disjoint trees connecting S for any set S ? V (G) of k vertices. We focus on the generalized connectivity of the strong product G1 _ G2 of connected graphs G1 and G2 with at least three vertices and girth at least five, and we prove the sharp bound k3(G1 _ G2) ? k3(G1)_3(G2) + k3(G1) + k3(G2)-1.


Author(s):  
Rao Li

Let G = (V(G), E(G)) be a graph. The complement of G is denoted by Gc. The forgotten topological index of G, denoted F(G), is defined as the sum of the cubes of the degrees of all the vertices in G. The second Zagreb index of G, denoted M2(G), is defined as the sum of the products of the degrees of pairs of adjacent vertices in G. A graph Gisk-Hamiltonian if for all X ⊂V(G) with|X| ≤ k, the subgraph induced byV(G) - Xis Hamiltonian. Clearly, G is 0-Hamiltonian if and only if G is Hamiltonian. A graph Gisk-path-coverableifV(G) can be covered bykor fewer vertex-disjoint paths. Using F(Gc) and M2(Gc), Li obtained several sufficient conditions for Hamiltonian and traceable graphs (Rao Li, Topological Indexes and Some Hamiltonian Properties of Graphs). In this chapter, the author presents sufficient conditions based upon F(Gc) and M2(Gc)for k-Hamiltonian, k-edge-Hamiltonian, k-path-coverable, k-connected, and k-edge-connected graphs.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


Sign in / Sign up

Export Citation Format

Share Document