Upper bounds for the sum of Laplacian eigenvalues of a graph and Brouwer’s conjecture

2019 ◽  
Vol 11 (02) ◽  
pp. 1950028 ◽  
Author(s):  
Hilal A. Ganie ◽  
S. Pirzada ◽  
Rezwan Ul Shaban ◽  
X. Li

Consider a simple graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] having Laplacian eigenvalues [Formula: see text]. Let [Formula: see text] be the sum of [Formula: see text] largest Laplacian eigenvalues of [Formula: see text]. Brouwer conjectured that [Formula: see text] for all [Formula: see text]. We obtain an upper bound for [Formula: see text] in terms of the clique number [Formula: see text], the number of vertices [Formula: see text] and the non-negative integers [Formula: see text] associated to the structure of the graph [Formula: see text]. We show that the Brouwer’s conjecture holds true for some new families of graphs. We use the same technique to prove that the Brouwer’s conjecture is true for a subclass of split graphs (It is already known that Brouwer’s conjecture holds for split graphs).

2017 ◽  
Vol 26 (14) ◽  
pp. 1750100 ◽  
Author(s):  
Minjung Lee ◽  
Sungjong No ◽  
Seungsang Oh

For a nontrivial knot [Formula: see text], Negami found an upper bound on the stick number [Formula: see text] in terms of its crossing number [Formula: see text] which is [Formula: see text]. Later, Huh and Oh utilized the arc index [Formula: see text] to present a more precise upper bound [Formula: see text]. Furthermore, Kim, No and Oh found an upper bound on the equilateral stick number [Formula: see text] as follows; [Formula: see text]. As a sequel to this research program, we similarly define the stick number [Formula: see text] and the equilateral stick number [Formula: see text] of a spatial graph [Formula: see text], and present their upper bounds as follows; [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] are the number of edges and vertices of [Formula: see text], respectively, [Formula: see text] is the number of bouquet cut-components, and [Formula: see text] is the number of non-splittable components.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950070
Author(s):  
Shuang Zhang ◽  
Yan Zhu

For a real number [Formula: see text], the [Formula: see text]-matrix of a graph [Formula: see text] is defined to be [Formula: see text] where [Formula: see text] and [Formula: see text] are the adjacency matrix and degree diagonal matrix of [Formula: see text], respectively. The [Formula: see text]-spectral radius of [Formula: see text], denoted by [Formula: see text], is the largest eigenvalue of [Formula: see text]. In this paper, we consider the upper bound of the [Formula: see text]-spectral radius [Formula: see text], also we give some upper bounds for the second largest eigenvalue of [Formula: see text]-matrix.


2016 ◽  
Vol 25 (1) ◽  
pp. 71-75
Author(s):  
I. Z. MILOVANOVIC ◽  
◽  
P. M. BEKAKOS ◽  
M. P. BEKAKOS ◽  
E. I. MILOVANOVIC ◽  
...  

Let G = (V, E) be an undirected simple graph of order n with m edges without isolated vertices. Further, let d1 ≥ d2 ≥ · · · ≥ dn be vertex degree sequence of G. General Randic index of graph ´ G = (V, E) is defined by Rα = X (i,j)∈E (didj ) α, where α ∈ R − {0}. We consider the case when α = −1 and obtain upper bound for R−1.


2016 ◽  
Vol 31 ◽  
pp. 167-186 ◽  
Author(s):  
Kinkar Das ◽  
Seyed Ahmad Mojalal

Let $G=(V,E)$ be a simple graph of order $n$ with $m$ edges. The energy of a graph $G$, denoted by $\mathcal{E}(G)$, is defined as the sum of the absolute values of all eigenvalues of $G$. The Laplacian energy of the graph $G$ is defined as \[ LE = LE(G)=\sum^n_{i=1}\left|\mu_i-\frac{2m}{n}\right| \] where $\mu_1,\,\mu_2,\,\ldots,\,\mu_{n-1},\,\mu_n=0$ are the Laplacian eigenvalues of graph $G$. In this paper, some lower and upper bounds for $\mathcal{E}(G)$ are presented in terms of number of vertices, number of edges, maximum degree and the first Zagreb index, etc. Moreover, a relation between energy and Laplacian energy of graphs is given.


Author(s):  
Hwa Jeong Lee ◽  
Sungjong No ◽  
Seungsang Oh

Negami found an upper bound on the stick number [Formula: see text] of a nontrivial knot [Formula: see text] in terms of the minimal crossing number [Formula: see text]: [Formula: see text]. Huh and Oh found an improved upper bound: [Formula: see text]. Huh, No and Oh proved that [Formula: see text] for a [Formula: see text]-bridge knot or link [Formula: see text] with at least six crossings. As a sequel to this study, we present an upper bound on the stick number of Montesinos knots and links. Let [Formula: see text] be a knot or link which admits a reduced Montesinos diagram with [Formula: see text] crossings. If each rational tangle in the diagram has five or more index of the related Conway notation, then [Formula: see text]. Furthermore, if [Formula: see text] is alternating, then we can additionally reduce the upper bound by [Formula: see text].


2019 ◽  
Vol 28 (05) ◽  
pp. 1950033
Author(s):  
Zac Bettersworth ◽  
Claus Ernst

In the paper, we study the incoherent nullification number [Formula: see text] of knots and links. We establish an upper bound on the incoherent nullification number of torus knots and links and conjecture that this upper bound is the actual incoherent nullification number of this family. Finally, we establish the actual incoherent nullification number of particular subfamilies of torus knots and links.


1996 ◽  
Vol 321 ◽  
pp. 335-370 ◽  
Author(s):  
R. R. Kerswell

Rigorous upper bounds on the viscous dissipation rate are identified for two commonly studied precessing fluid-filled configurations: an oblate spheroid and a long cylinder. The latter represents an interesting new application of the upper-bounding techniques developed by Howard and Busse. A novel ‘background’ method recently introduced by Doering & Constantin is also used to deduce in both instances an upper bound which is independent of the fluid's viscosity and the forcing precession rate. Experimental data provide some evidence that the observed viscous dissipation rate mirrors this behaviour at sufficiently high precessional forcing. Implications are then discussed for the Earth's precessional response.


Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon ◽  
Nicole Lemire

AbstractWe find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.



2017 ◽  
Vol 23 (2) ◽  
pp. 21-31
Author(s):  
Sridhara G ◽  
Rajesh Kanna

Let G be simple graph with n vertices and m edges. The energy E(G) of G, denotedby E(G), is dened to be the sum of the absolute values of the eigenvalues of G. Inthis paper, we present two new upper bounds for energy of a graph, one in terms ofm,n and another in terms of largest absolute eigenvalue and the smallest absoluteeigenvalue. The paper also contains upper bounds for Laplacian energy of graph.


Sign in / Sign up

Export Citation Format

Share Document