THE EFFECT OF UPPER-HEATING SYSTEM IN SOLAR WATER STORAGE TANK

2014 ◽  
Vol 22 (04) ◽  
pp. 1450027 ◽  
Author(s):  
HYO SEOK SON ◽  
JAE-WOOK KWON ◽  
SEONG HOON LEE ◽  
CHUL KIM ◽  
HIKI HONG

Thermal stratification in the water storage tank of solar heating system is essential to increase the collection efficiency. We previously investigated the stratification performance of side-heating system, where the hot water returning from the collector heats up the side wall of storage tank. Subsequently, we studied an evolved heating system for further improvement, where we added an upper-heating to the side-heating. Here we thoroughly examine the stratification performance of the evolved heating system using TRNSYS-based simulation. As the essential result, contrary to expectation, evolved system does not show substantial improvement of collection efficiency compared to side-heating. However, we confirm that evolved system excels in the useful energy.

2017 ◽  
Vol 28 (1) ◽  
pp. 76 ◽  
Author(s):  
G.D. Joubert ◽  
R.T. Dobson

The as-built and tested passive night-sky radiation cooling/heating system considered in this investigation consists of a radiation panel, a cold water storage tank, a hot water storage tank, a room and the interconnecting pipework. The stored cold water can be used to cool a room during the day, particularly in summer. A theoretical time-dependent thermal performance model was also developed and compared with the experimental results and it is shown that the theoretical simulation model captures the experimental system performance to within a reasonable degree of accuracy. A natural circulation experimental set-up was constructed and subsequently used to show that under local (Stellenbosch, South Africa) conditions the typical heat-removal rate from the water in the tank is 55 W/m2 of radiating panel during the night; during the day the water in the hot water-storage tank was heated from 24 °C to 62 °C at a rate of 96 W/m2. The system was also able to cool the room at a rate of 120 W/m3. The results thus confirmed that it is entirely plausible to design an entirely passive system, that is, without the use of any moving mechanical equipment such as pumps and active controls, for both room-cooling and water-heating. It is thus concluded that a passive night-sky radiation cooling/heating system is a viable energy-saving option and that the theoretical simulation, as presented, can be used with confidence as an energy-saving system design and evaluation tool. Keywords: passive cooling and heating, buoyancy-driven fluid flow, theoretical simulation, experimental verification Highlights:Passively driven renewable energy heating and cooling systems are considered.Time-dependent mathematical simulation model is presented.Experimental buoyancy-driven heating and cooling system built and tested.Experimental results demonstrate the applicability of the theoretical simulation model.Saving and evaluation design tool.


2017 ◽  
Vol 126 ◽  
pp. 1006-1016 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Binlin Dou ◽  
Huajie Huang ◽  
Guanhua Zhang

Author(s):  
Necdet Altuntop ◽  
Veysel Ozceyhan ◽  
Yusuf Tekin ◽  
Sibel Gunes

In this study the effect of obstacle geometry and its position on thermal stratification in solar powered domestic hot water storage tanks are numerically investigated. The goal of this study is to obtain higher thermal stratification and supply hot water for usage as long as possible. The temperature distributions are presented for three different obstacle geometries (1, 2 and 3) and six different distances (f = 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 mm) from the bottom of the hot water storage tank. The numerical method is validated using both experimental and numerical results available in the literature. It is observed from the results that the thermal stratification increases with the increasing obstacle distance from the bottom of the hot water storage tank for obstacle 1 and 3. The obstacle 2 provides less thermal stratification than the obstacles 1 and 3. As a result, in a duration of 30 minutes, the obstacle 3 provides the best thermal stratification for the distance of f = 0.8 mm from the bottom of the hot water storage tank.


Author(s):  
Qiong Li ◽  
Xiaoqiao Huang ◽  
Yonghang Tai ◽  
Wenfeng Gao ◽  
Wenxian Lin ◽  
...  

2017 ◽  
Vol 111 ◽  
pp. 353-371 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Binlin Dou ◽  
Huajie Huang ◽  
Weidong Wu ◽  
...  

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Nathan Devore ◽  
Henry Yip ◽  
Jinny Rhee

Experimental designs for a solar domestic hot water storage system were built in efforts to maximize thermal stratification within the tank. A stratified thermal store has been shown by prior literature to maximize temperature of the hot water drawn from the tank and simultaneously minimize collector inlet temperature required for effective heat transfer from the solar panels, thereby improving the annual performance of domestic solar hot water heating systems (DSHWH) by 30–60%. Our design incorporates partitions, thermal diodes, and a coiled heat exchanger enclosed in an annulus. The thermal diodes are passive devices that promote natural convection currents of hot water upward, while inhibiting reverse flow and mixing. Several variations of heat exchanger coils, diodes and partitions were simulated using ansys Computational Fluid Dynamics, and benchmarked using experimental data. The results revealed that the optimum design incorporated two partitions separated by a specific distance with four diodes for each partition. In addition, it was discovered that varying the length and diameter of the thermal diodes greatly affected the temperature distribution. The thermal diodes and partitions were used to maintain stratification for long periods of time by facilitating natural convective currents and taking advantage of the buoyancy effect. The results of the experiment and simulations proved that incorporating these elements into the design can greatly improve the thermal performance and temperature stratification of a domestic hot water storage tank.


Sign in / Sign up

Export Citation Format

Share Document