An innovative design approach of hot water storage tank for solar water heating system using artificial neural network

Author(s):  
Mahesh.V. Kulkarni ◽  
D.S. Deshmukh ◽  
S.P Shekhawat
2017 ◽  
Vol 28 (1) ◽  
pp. 76 ◽  
Author(s):  
G.D. Joubert ◽  
R.T. Dobson

The as-built and tested passive night-sky radiation cooling/heating system considered in this investigation consists of a radiation panel, a cold water storage tank, a hot water storage tank, a room and the interconnecting pipework. The stored cold water can be used to cool a room during the day, particularly in summer. A theoretical time-dependent thermal performance model was also developed and compared with the experimental results and it is shown that the theoretical simulation model captures the experimental system performance to within a reasonable degree of accuracy. A natural circulation experimental set-up was constructed and subsequently used to show that under local (Stellenbosch, South Africa) conditions the typical heat-removal rate from the water in the tank is 55 W/m2 of radiating panel during the night; during the day the water in the hot water-storage tank was heated from 24 °C to 62 °C at a rate of 96 W/m2. The system was also able to cool the room at a rate of 120 W/m3. The results thus confirmed that it is entirely plausible to design an entirely passive system, that is, without the use of any moving mechanical equipment such as pumps and active controls, for both room-cooling and water-heating. It is thus concluded that a passive night-sky radiation cooling/heating system is a viable energy-saving option and that the theoretical simulation, as presented, can be used with confidence as an energy-saving system design and evaluation tool. Keywords: passive cooling and heating, buoyancy-driven fluid flow, theoretical simulation, experimental verification Highlights:Passively driven renewable energy heating and cooling systems are considered.Time-dependent mathematical simulation model is presented.Experimental buoyancy-driven heating and cooling system built and tested.Experimental results demonstrate the applicability of the theoretical simulation model.Saving and evaluation design tool.


2014 ◽  
Vol 22 (04) ◽  
pp. 1450027 ◽  
Author(s):  
HYO SEOK SON ◽  
JAE-WOOK KWON ◽  
SEONG HOON LEE ◽  
CHUL KIM ◽  
HIKI HONG

Thermal stratification in the water storage tank of solar heating system is essential to increase the collection efficiency. We previously investigated the stratification performance of side-heating system, where the hot water returning from the collector heats up the side wall of storage tank. Subsequently, we studied an evolved heating system for further improvement, where we added an upper-heating to the side-heating. Here we thoroughly examine the stratification performance of the evolved heating system using TRNSYS-based simulation. As the essential result, contrary to expectation, evolved system does not show substantial improvement of collection efficiency compared to side-heating. However, we confirm that evolved system excels in the useful energy.


2018 ◽  
Vol 31 ◽  
pp. 02012 ◽  
Author(s):  
Syaifurrahman ◽  
A Gani Usman ◽  
Rakasiwi Rinjani

Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4741
Author(s):  
María Gasque ◽  
Federico Ibáñez ◽  
Pablo González-Altozano

This paper demonstrates that it is possible to characterize the water temperature profile and its temporal trend in a hot water storage tank during the thermal charge process, using a minimum number of thermocouples (TC), with minor differences compared to experimental data. Four experimental tests (two types of inlet and two water flow rates) were conducted in a 950 L capacity tank. For each experimental test (with 12 TC), four models were developed using a decreasing number of TC (7, 4, 3 and 2, respectively). The results of the estimation of water temperature obtained with each of the four models were compared with those of a fifth model performed with 12 TC. All models were tested for constant inlet temperature. Very acceptable results were achieved (RMSE between 0.2065 °C and 0.8706 °C in models with 3 TC). The models were also useful to estimate the water temperature profile and the evolution of thermocline thickness even with only 3 TC (RMSE between 0.00247 °C and 0.00292 °C). A comparison with a CFD model was carried out to complete the study with very small differences between both approaches when applied to the estimation of the instantaneous temperature profile. The proposed methodology has proven to be very effective in estimating several of the temperature-based indices commonly employed to evaluate thermal stratification in water storage tanks, with only two or three experimental temperature data measurements. It can also be used as a complementary tool to other techniques such as the validation of numerical simulations or in cases where only a few experimental temperature values are available.


2012 ◽  
Vol 193-194 ◽  
pp. 30-33
Author(s):  
Xue Ying Wang ◽  
Dong Xu ◽  
Ya Jun Wu

This article analyzes the problem in application the solar system was used in residential building, puts forward the requirements to use energy and choose the setting of the solar energy collector from two aspects of building and drainage design respectively. In addition, the article explicates andthe solar energy collector and building integrated design and the development of solar energy collector. At last, the article puts forward some Suggestions on the improvement and development of residential solar hot water system and the design of the hot water supply bath solution of practice to make solar energy and low power assisted by night combining.


Sign in / Sign up

Export Citation Format

Share Document