Review: Condensation and Evaporation Characteristics of Low GWP Refrigerants in Plate Heat Exchangers

2016 ◽  
Vol 24 (02) ◽  
pp. 1630004 ◽  
Author(s):  
Byung Hoon Shon ◽  
Seung Won Jeon ◽  
Yongchan Kim ◽  
Yong Tae Kang

In this paper, condensation and evaporation characteristics of low global warming potential (GWP) refrigerants such as R-1234yf and R-1234ze series are reviewed. This review focuses on heat transfer and pressure drop in plate heat exchangers. Mass flux is considered as an important factor while saturation temperature is not for condensation and evaporation process in plate heat exchangers. The dryout phenomenon occurs occasionally and gives greatly harmful impact on evaporation heat transfer. It is found that R-1234yf and R-1234ze(E) give slightly lower heat transfer performance than R-134a for both condensation and evaporation processes. Generally, low GWP refrigerants presented in this review give lower heat transfer coefficient and higher frictional pressure drop than the conventional refrigerants. Nevertheless, R-1234ze(Z) gives superior heat transfer performance than other refrigerants in condensation. R-32 gives remarkable performance in evaporation, but it gives relatively high GWP compared to other low GWP refrigerants.

2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


2013 ◽  
Vol 423-426 ◽  
pp. 1910-1913
Author(s):  
Jian Rong Du ◽  
Zu Yi Zheng ◽  
Jun Hua Wan ◽  
Yi De Wang ◽  
Zhong Min Wan ◽  
...  

Three heat exchangers, all of which have 38 tubes in total and 6 passes, with different tube arrangements were simulation investigated in laboratory. The effect of flat tube distribution on heat transfer performance and pressure drop characteristic was simulation investigated. The effect of different air velocity and flow on heat transfer performance and pressure drop characteristic was simulation investigated too. The results show that similar tube distribution has little effect on heat transfer but has great effect on pressure drop. It was found the tube arrangement from first pass to sixth pass is 10,9,6,5,4,4 has the best heat transfer performance and its pressure drop is small. The heat transfer and pressure drop increase with the air velocity and refrigerant flow.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5304
Author(s):  
Howard Lee ◽  
Ali Sadeghianjahromi ◽  
Po-Lun Kuo ◽  
Chi-Chuan Wang

An experimental study regarding the thermofluid characteristics of a shell-and-plate heat exchanger with different chevron angles (45°/45°, 45°/65°, and 65°/65°) with a plate diameter of 440 mm was carried out. Water was used as the working fluid on both sides and the corresponding temperatures ranged from 30–70 °C. The flow rate on the plate or shell side ranged from 10–60 m3/h. The effects of chevron angles on the heat transfer and fluid flow characteristics of shell-and-plate heat exchangers were studied in detail. With regard to the heat transfer performance on the plate side, a higher chevron angle (65°/65°) resulted in a significantly better performance than a low chevron angle (45°/45°). The effect of the chevron angle became even more pronounced at high Reynolds numbers. Unlike the plate side, an increase in the chevron angle had a negative effect on the heat transfer performance of the shell side. Additionally, this opposite effect was more prominent at low Reynolds numbers due to the comparatively large contribution of the manifold. The friction factor increased appreciably with the increase in the chevron angle. However, when changing the chevron angle from 45°/45° to 65°/65°, the increase in the friction factor was about 3–4 times on the plate side while it was about 2 times on the shell side. This can be attributed to the presence of the distribution/collection manifold on the shell side. Empirical correlations for the Nusselt number and friction factor were developed for different combinations of chevron angles with mean deviations of less than 1%.


2014 ◽  
Vol 701-702 ◽  
pp. 1233-1236
Author(s):  
Lv Xian Zeng ◽  
Zu Yi Zheng ◽  
Jun Hua Wan ◽  
Xi Chen ◽  
Zhong Min Wan ◽  
...  

Three heat exchangers, all of which have 38 tubes in total and 6 passes, with different tube arrangements were manufactured to be experimental investigated in laboratory. The effect of flat tube distribution on heat transfer performance and pressure drop characteristic was experimental investigated. The effect of different air velocity and flow on heat transfer performance and pressure drop characteristic was also experimental investigated. The results show that similar tube distribution has little effect on heat transfer quality but has great effect on pressure drop. It was found the third arrangement has the best heat transfer and its pressure drop is small. Thus the third arrangement is the best solution. The heat transfer and pressure drop increase with the air velocity and refrigerant flow, so a proper value should be chosen, it was found that the simulation results were mainly agreement with the experimental results.


2014 ◽  
Vol 11 (4) ◽  
Author(s):  
Hie Chan Kang ◽  
Hyejung Cho ◽  
Jin Ho Kim ◽  
Anthony M. Jacobi

The present work is performed to evaluate the heat transfer performance of a heat exchanger used in a direct methanol fuel cell. Because of material constraints and performance requirements, a louver fin heat exchanger is modified for use with conventional microchannel tubes and also with multiple small-diameter tubes (called multitubes). Prototype heat exchangers are tested, and the air-side heat transfer, pressure drop, and fan power are measured in a wind tunnel and simulated using a commercial code. The air-side pressure drop and heat transfer coefficient of the multitubes show similar trends to those of the flat-tube heat exchanger if the contact resistance is negligible. The tube spacing of the prototype multitube heat exchangers has a small effect on the pressure drop and heat transfer, but it has a profound effect on the air-side heat transfer performance because of the contact resistance between the tubes and louver fins. The air-side pressure drop agrees well with an empirical correlation for flat tubes.


2011 ◽  
Vol 673 ◽  
pp. 35-39 ◽  
Author(s):  
Shuichi Torii

The aim of the present study is to improve heat transfer performance and to attenuate pressure drop in plate heat exchanger with the different plate shapes. In this study, the single plate model of the plate heat exchanger is made and the thermal fluid flow characteristics in the narrows channel are examined for two different shaped plates, i.e., separate herringbone and plover patterns and the results are compared with that of flat or herringbone plate. In addition, the flow of the fluid with the surface of the rugged plate in the plate heat exchanger was visualized by tuft method. It is found that if the separate herringbone plate whose pith is 2 is employed, heat transfer performance is substantially enhanced for the high Reynolds number region, while pressure drop is suppressed.


Author(s):  
Kunrong Shen ◽  
Zhichuan Sun ◽  
Xiaolong Yan ◽  
Wei Li ◽  
David J. Kukulka ◽  
...  

With the current ozone depletion and global warming issues, it is critical to develop systems with better heat transfer performance and nontoxic refrigerants. An experimental investigation was performed to evaluate convective condensation and evaporation heat transfer characteristics using R410A at low mass fluxes. Experiments were conducted in a 12.0-mm O.D. horizontal smooth tube, and three enhanced tubes: 2EHT1 tube, 2EHT2 tube and 1EHT1 tube (O.D. 12.7 mm), with different sizes and shapes of dimple/protrusion and petal arrays. Refrigerant inlet quality varied in this study. Single phase experiment was conducted before the two-phase flow measurement. In-tube evaporation measurements of R410A were reported for saturation temperature at 6°C with vapor quality in the range of 0.2 to 0.9, and mass flux varied from 60 to 200 kg/m2s. Condensation tests were performed at saturation temperature of 45°C, vapor quality of 0.9 to 0.2, and mass flux of 60 to 260 kg/m2s. For evaporation with mass flux less than 200 kg/m2s, heat transfer coefficient of the 2EHT2 tube, 2EHT1 tube and 1EHT1 tube were greater than the experimental HTC (heat transfer coefficient) of smooth tube results by an average factor of 1.71, 1.69 and 1.87, respectively. Pressure drop in the 2EHT2 tube was 5% higher than the 2EHT1 tube and 1EHT1 tube. For condensation, when mass flux was less than 200 kg/m2s, the 1EHT1 tube showed obvious enhancement in heat transfer coefficient, while the pressure drop in the 1EHT1 tube was slightly 3–5% higher than that of the 2EHT1 tube and the 2EHT2 tube. In conclusion, for mass flux below 200 kg/m2s, the 1EHT1 tube presented the best heat transfer performance among others with R410A as the refrigerant.


Sign in / Sign up

Export Citation Format

Share Document