scholarly journals APPLICATION OF DISSIPATIVE PARTICLE DYNAMICS TO THE STUDY OF A RED BLOOD CELL IN SIMPLE SHEAR FLOW

2014 ◽  
Vol 34 ◽  
pp. 1460373
Author(s):  
TING YE ◽  
NHAN PHAN-THIEN ◽  
BOO CHEONG KHOO ◽  
CHWEE TECK LIM

The present work reports an attempt to apply the dissipative particle dynamics (DPD) method to study the dynamic behaviors of a red blood cell (RBC) in simple shear flow. The simulation system is discretized into four types of particles, namely wall particles, fluid particles, membrane particles and internal particles. The particle interaction is modeled by the DPD method, and the membrane particles are connected into a viscoelastic triangular network to represent the RBC membrane. As benchmarking tests, we simulate the deformation of a spherical capsule in shear flow and compare it with the past study, and also examine the effect of computational domain size. After that, we investigate the dynamics of a RBC in shear flow at different membrane shear and bending moduli. Our simulations reproduce the tank-treading, trembling and tumbling motions of the RBC at the shear modulus Es = 6, 60 and 600 μN/m, respectively. Moreover, we find that the RBC undergoes a trembling motion when its bending modulus is large enough, where the obvious stretching and smoothing of the RBC occur alternately in shape.

Author(s):  
Toshihiro OMORI ◽  
Takuji ISHIKAWA ◽  
Yohsuke IMAI ◽  
Takami YAMAGUCHI

Author(s):  
Toshihiro OMORI ◽  
Takuji ISHIKAWA ◽  
Dominique BARTHES-BIESEL ◽  
Yohsuke IMAI ◽  
Takami YAMAGUCHI

Author(s):  
Toshihiro OMORI ◽  
Takuji ISHIKAWA ◽  
Dominique BARTHES-BIESEL ◽  
Yohsuke IMAI ◽  
Takami YAMAGUCHI

1998 ◽  
Vol 10 (8) ◽  
pp. 1834-1845 ◽  
Author(s):  
C. D. Eggleton ◽  
A. S. Popel

2012 ◽  
Vol 86 (5) ◽  
Author(s):  
T. Omori ◽  
T. Ishikawa ◽  
D. Barthès-Biesel ◽  
A.-V. Salsac ◽  
Y. Imai ◽  
...  

1995 ◽  
Vol 283 ◽  
pp. 175-200 ◽  
Author(s):  
Hua Zhou ◽  
C. Pozrikidis

The transient deformation of liquid capsules enclosed by incompressible membranes whose mechanical properties are dominated by isotropic tension is studied as a model of red blood cell deformation in simple shear flow. The problem is formulated in terms of an integral equation for the distribution of the tension over the cell membrane which is solved using a point-wise collocation and a spectral-projection method. The computations illustrate the dependence of the deformed steady cell shape, membrane tank-treading frequency, membrane tension, and rheological properties of a dilute suspension, on the undeformed cell shape. The general features of the evolution of two-dimensional cells are found to be similar to those of three-dimensional cells, and the corresponding membrane tank-treading frequency and maximum tension are seen to attain comparable values. The numerical results are compared with previous asymptotic analyses for small deformations and available experimental observations, with satisfactory agreement. An estimate of the maximum shear stress for membrane breakup and red blood cell hemolysis is deduced on the basis of the computed maximum membrane tension at steady state.


2019 ◽  
Vol 17 (07) ◽  
pp. 1950032
Author(s):  
Sisi Tan ◽  
Mingze Xu

A biological cell exhibits viscoelastic behavior mainly because its components (membrane and cytoplasm) are viscoelastic, and this is clearly seen when it is stretched and released. The present work numerically studied the shape recovery of a red blood cell (RBC) based on a viscoelastic model at the meso-scale using Dissipative Particle Dynamics (DPD) method. In this model, the RBC membrane is represented by a triangular network of worm-like chains, while the cytoplasm is replaced by a system of DPD particles. This viscoelastic model is validated by examining the stretching deformation of an RBC and comparing with the existing experimental data. Viscoelastic properties of the RBC are then analyzed by stretching an RBC under a 20 pN stretching force, and allowing it to relax. The time to recover its shape upon removal of the stretching force is measured to be 111 and 92.6[Formula: see text]ms for an RBC with and without cytoplasm, and the corresponding membrane viscosity is [Formula: see text] and [Formula: see text] [Formula: see text], respectively. These values, for an RBC with cytoplasm, are closer to experimental data than those for an RBC without cytoplasm, lending support to the model with cytoplasm. Finally, parametric studies are conducted on the membrane elastic and bending moduli. The results show that the shape recovery time decreases with increasing the membrane elastic and bending moduli.


Sign in / Sign up

Export Citation Format

Share Document