A combined magnetophoresis/dielectrophoresis based microbead array as high-throughput biomolecular tweezers

TECHNOLOGY ◽  
2014 ◽  
Vol 02 (01) ◽  
pp. 23-27
Author(s):  
Lizhi Cao ◽  
Zhengchun Peng ◽  
Wilbur Lam ◽  
Thomas H. Barker

In this paper we describe a combined magnetophoresis (MAP) and dielectrophoresis (DEP) based platform for high throughput characterization of specific biomolecular interactions. The magnetic manipulation enables parallel loading of individual magnetic beads onto a magnetic pad array, while the combination of tightly controlled opposing magnetic and dielectrophoretic (DEP) forces is employed to produce characteristic out-of-plane (z-axial) bead displacement. We optimized design parameters to evenly load 2.8 μm biomolecule functionalized paramagnetic beads onto magnetic pads, and demonstrate the ability of our tweezers to discriminate between specific antibody-antigen bond from non-specific bond formed between bead and pad surface.

Author(s):  
Alfred Ludwig ◽  
Mona Nowak ◽  
Swati Kumari ◽  
Helge S. Stein ◽  
Ramona Gutkowski ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yiming Chen ◽  
Chi Chen ◽  
Chen Zheng ◽  
Shyam Dwaraknath ◽  
Matthew K. Horton ◽  
...  

AbstractThe L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow. The data is disseminated through the Materials Project and addresses a critical need for L-edge XANES spectra among the research community.


2021 ◽  
Vol 52 (4) ◽  
pp. 1159-1168
Author(s):  
Lei Zhao ◽  
Yuanxun Zhou ◽  
Hui Wang ◽  
Xuebin Chen ◽  
Lixia Yang ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 734
Author(s):  
Paul K. Varghese ◽  
Mones Abu-Asab ◽  
Emilios K. Dimitriadis ◽  
Monika B. Dolinska ◽  
George P. Morcos ◽  
...  

Human Tyrosinase (Tyr) is the rate-limiting enzyme of the melanogenesis pathway. Tyr catalyzes the oxidation of the substrate L-DOPA into dopachrome and melanin. Currently, the characterization of dopachrome-related products is difficult due to the absence of a simple way to partition dopachrome from protein fraction. Here, we immobilize catalytically pure recombinant human Tyr domain (residues 19–469) containing 6xHis tag to Ni-loaded magnetic beads (MB). Transmission electron microscopy revealed Tyr-MB were within limits of 168.2 ± 24.4 nm while the dark-brown melanin images showed single and polymerized melanin with a diameter of 121.4 ± 18.1 nm. Using Hill kinetics, we show that Tyr-MB has a catalytic activity similar to that of intact Tyr. The diphenol oxidase reactions of L-DOPA show an increase of dopachrome formation with the number of MB and with temperature. At 50 °C, Tyr-MB shows some residual catalytic activity suggesting that the immobilized Tyr has increased protein stability. In contrast, under 37 °C, the dopachrome product, which is isolated from Tyr-MB particles, shows that dopachrome has an orange-brown color that is different from the color of the mixture of L-DOPA, Tyr, and dopachrome. In the future, Tyr-MB could be used for large-scale productions of dopachrome and melanin-related products and finding a treatment for oculocutaneous albinism-inherited diseases.


2019 ◽  
Vol 60 (5) ◽  
pp. 1082-1097 ◽  
Author(s):  
Panneerselvam Krishnamurthy ◽  
Yukiko Fujisawa ◽  
Yuya Takahashi ◽  
Hanako Abe ◽  
Kentaro Yamane ◽  
...  

2015 ◽  
Vol 87 (9) ◽  
pp. 4667-4674 ◽  
Author(s):  
Daniel W. Woodall ◽  
Beixi Wang ◽  
Ellen D. Inutan ◽  
Srinivas B. Narayan ◽  
Sarah Trimpin

Sign in / Sign up

Export Citation Format

Share Document