Characterization of a soft magnetic composite for use in road-embedded wireless-charging systems

Author(s):  
Kai-Yeung Li ◽  
Bill Trompetter ◽  
Maedeh Amirpour ◽  
Tom Allen ◽  
Simon Bickerton ◽  
...  

The ferrite magnetic core is an integral component of road-embedded wireless charging systems for electric vehicles. However, the brittleness of ferrite makes it susceptible to premature fracture due to cyclic wheel loading from vehicles. This has motivated the development of a soft magnetic composite (SMC) composed of a flexible polyurethane and crushed ferrite as an alternative. An experimental investigation was conducted into the trade-offs between mechanical, thermal and magnetic properties at ferrite volume fractions between 45.9[Formula: see text]vol% and 80.6[Formula: see text]vol%. A comparison was made between measured properties and predictions from analytical models in order to further investigate the characteristics of the composite. The investigation showed a trade-off between the increase in magnetic permeability and the reduction in strain-to-failure as ferrite volume fraction increased. In addition, a large increase in flexural modulus and thermal conductivity, along with a slight increase in flexural strength was observed. More importantly, the strain-to-failure of the composite was 20 times higher than that of ferrite even at the highest volume fraction, indicating that the SMC was successful in providing a more ductile and flexible alternative.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4400
Author(s):  
Luca Ferraris ◽  
Fausto Franchini ◽  
Emir Pošković ◽  
Marco Actis Grande ◽  
Róbert Bidulský

In recent years, innovative magnetic materials have been introduced in the field of electrical machines. In the ambit of soft magnetic materials, laminated steels guarantee good robustness and high magnetic performance but, in some high-frequency applications, can be replaced by Soft Magnetic Composite (SMC) materials. SMC materials allow us to reduce the eddy currents and to design innovative 3D magnetic circuits. In general, SMCs are characterized at room temperature, but as electrical machines operate at high temperature (around 100 °C), an investigation analysis of the temperature effect has been carried out on these materials; in particular, three SMC samples with different binder percentages and process parameters have been considered for magnetic and energetic characterization.


Sign in / Sign up

Export Citation Format

Share Document