Reconstruction of Acoustic Radiation of a Vibrating Structure Located in a Half-Space Bounded by a Passive Surface with Finite Acoustic Impedance

2020 ◽  
Vol 28 (04) ◽  
pp. 2050019
Author(s):  
Daren Zhou ◽  
Huancai Lu ◽  
D. Michael McFarland ◽  
Yongxiong Xiao

Vibrating structures are often mounted on or located near a passive plane surface with finite acoustic impedance, and hence the acoustic pressures measured in a half-space bounded by the surface consist of both the direct radiation from the structure and the reflection from the boundary surface. In order to visualize the direct radiation from the source into free space, a reconstruction method based on expansion in half-space spherical wave functions is proposed. First, the series of half-space spherical wave functions is derived based on the analytical solution of the sound field due to a multipole source located near an impedance plane. Then the sound field in the half-space is approximated by the superposition of a finite number of half-space expansion terms. The expansion coefficients are determined by solving an overdetermined linear system of equations obtained by matching this assumed solution to the total acoustic pressures in the half-space. The free-space radiation can finally be reconstructed via multiplying the free-space spherical wave functions by the corresponding coefficients. Numerical simulation examples of a vibrating sphere and a vibrating baffled plate are demonstrated. The effects of specific acoustic impedance of the boundary and the locations of the measurement points on the accuracy of reconstruction are examined.

2020 ◽  
Vol 03 (02) ◽  
pp. 1-1
Author(s):  
Doo-Sung Lee ◽  

This paper concerns a poroelastic half-space in which plane compressional waves are scattered by a spherical inclusion. Addition theorems for the spherical wave functions are utilized to meet the boundary conditions on the plane, and the satisfaction of the given conditions on the boundary of the sphere leads to three infinite series equations, whose solution can be acquired by successive approximations. Further, its existence and uniqueness are discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2722
Author(s):  
Zhiwen Qian ◽  
Dejiang Shang ◽  
Yuan Hu ◽  
Xinyang Xu ◽  
Haihan Zhao ◽  
...  

The Green’s function (GF) directly eases the efficient computation for acoustic radiation problems in shallow water with the use of the Helmholtz integral equation. The difficulty in solving the GF in shallow water lies in the need to consider the boundary effects. In this paper, a rigorous theoretical model of interactions between the spherical wave and the liquid boundary is established by Fourier transform. The accurate and adaptive GF for the acoustic problems in the Pekeris waveguide with lossy seabed is derived, which is based on the image source method (ISM) and wave acoustics. First, the spherical wave is decomposed into plane waves in different incident angles. Second, each plane wave is multiplied by the corresponding reflection coefficient to obtain the reflected sound field, and the field is superposed to obtain the reflected sound field of the spherical wave. Then, the sound field of all image sources and the physical source are summed to obtain the GF in the Pekeris waveguide. The results computed by this method are compared with the standard wavenumber integration method, which verifies the accuracy of the GF for the near- and far-field acoustic problems. The influence of seabed attenuation on modal interference patterns is analyzed.


1968 ◽  
Vol 35 (2) ◽  
pp. 255-266 ◽  
Author(s):  
R. E. Nickell ◽  
J. L. Sackman

A method for obtaining approximate solutions to initial-boundary-value problems in the linear theory of coupled thermoelasticity is developed. This procedure is a direct variational method representing an extension of the Ritz method. As an illustration of the procedure, it is applied to a class of one-dimensional, transient problems involving weak thermal shocks. The problems considered are: (a) Rapid heating of a half space through a thermally conducting boundary layer, and (b) gradual heating of the boundary surface of a half space. The solutions generated by the extended Ritz method are compared, for accuracy, to solutions obtained from a numerical inversion scheme for the Laplace transform based on Gaussian quadrature. These comparisons indicate that the variational procedure developed here can yield accurate results.


2019 ◽  
Vol 99 (4) ◽  
Author(s):  
X. Garcia Santiago ◽  
M. Hammerschmidt ◽  
S. Burger ◽  
C. Rockstuhl ◽  
I. Fernandez-Corbaton ◽  
...  

2014 ◽  
Vol 577 ◽  
pp. 1198-1201
Author(s):  
Zhang Liang ◽  
Chun Xia Meng ◽  
Hai Tao Xiao

The physical characteristics are compared between shallow and deep water, in physics and acoustics, respectively. There is a specific sound speed profile in deep water, which is different from which in shallow water, resulting in different sound propagation law between them. In this paper, the sound field distributions are simulated under respective typical sound speed profile. The color figures of sound intensity are obtained, in which the horizontal ordinate is distance, and the vertical ordinate is depth. Then we can get some important characteristics of sound propagation. The results show that the seabed boundary is an important influence on sound propagation in shallow water, and sound propagation loss in deep water convergent zone is visibly less than which in spherical wave spreading. We can realize the remote probing using the acoustic phenomenon.


Sign in / Sign up

Export Citation Format

Share Document