Fabrication of Highly Dense Ru Thin Films by High-Temperature Metal-Organic Chemical Vapor Deposition with NH3Gas as Ru Oxidation Suppressing Agent

2004 ◽  
Vol 43 (8A) ◽  
pp. 5482-5486 ◽  
Author(s):  
Ho-Jung Sun ◽  
Younsoo Kim ◽  
Sung-Eon Park ◽  
Kwon Hong ◽  
Jae-Sung Roh ◽  
...  
2007 ◽  
Vol 515 (5) ◽  
pp. 2921-2925 ◽  
Author(s):  
Chunyu Wang ◽  
Volker Cimalla ◽  
Genady Cherkashinin ◽  
Henry Romanus ◽  
Majdeddin Ali ◽  
...  

2003 ◽  
Vol 42 (Part 1, No. 5A) ◽  
pp. 2839-2842 ◽  
Author(s):  
Jeong Hoon Park ◽  
Kug Sun Hong ◽  
Woon Jo Cho ◽  
Jang-Hoon Chung

1994 ◽  
Vol 9 (7) ◽  
pp. 1721-1727 ◽  
Author(s):  
Jie Si ◽  
Seshu B. Desu ◽  
Ching-Yi Tsai

Synthesis of zirconium tetramethylheptanedione [Zr(thd)4] was optimized. Purity of Zr(thd)4 was confirmed by melting point determination, carbon, and hydrogen elemental analysis and proton nuclear magnetic resonance spectrometer (NMR). By using Zr(thd)4, excellent quality ZrO2 thin films were successfully deposited on single-crystal silicon wafers by metal-organic chemical vapor deposition (MOCVD) at reduced pressures. For substrate temperatures below 530 °C, the film deposition rates were very small (⋚1 nm/min). The film deposition rates were significantly affected by (i) source temperature, (ii) substrate temperature, and (iii) total pressure. As-deposited films are carbon free. Furthermore, only the tetragonal ZrO2 phase was identified in as-deposited films. The tetragonal phase transformed progressively into the monoclinic phase as the films were subjected to a high-temperature post-deposition annealing. The optical properties of the ZrO2 thin films as a function of wavelength, in the range of 200 nm to 2000 nm, were also reported. In addition, a simplified theoretical model which considers only a surface reaction was used to analyze the deposition of ZrO2 films. The model predicated the deposition rates well for various conditions in the hot wall reactor.


2019 ◽  
Vol 114 (24) ◽  
pp. 241103 ◽  
Author(s):  
Caroline E. Reilly ◽  
Cory Lund ◽  
Shuji Nakamura ◽  
Umesh K. Mishra ◽  
Steven P. DenBaars ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document