Wide-Range Third Harmonic Oscillations in Free-Electron Lasers Using the Storage Ring NIJI-IV

2012 ◽  
Vol 81 (9) ◽  
pp. 093501 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Kawakatsu Yamada
2018 ◽  
Vol 25 (5) ◽  
pp. 1317-1322 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
QiKa Jia

It was demonstrated that harmonic order in free-electron laser (FEL) oscillations could be switched by adjusting the dispersive gap of the optical klystron ETLOK-III in the storage ring NIJI-IV. The effective gains for the fundamental and third-harmonic FEL oscillations were evaluated and it was confirmed that the FEL oscillated at the order of the harmonic with the higher effective gain. The ratio between the effective gain for the fundamental and that for the third harmonic was controlled by the dispersive gap. It was also demonstrated that a spectral measurement of the FEL-based Compton scattering X-ray beam was effective for directly observing the switching of the harmonic order. These results contribute to the development of higher-harmonic FEL oscillations suppressing the fundamental FEL oscillation in the extreme ultraviolet and X-ray regions.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130590 ◽  
Author(s):  
Jan Kern ◽  
Johan Hattne ◽  
Rosalie Tran ◽  
Roberto Alonso-Mori ◽  
Hartawan Laksmono ◽  
...  

X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel . This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL.


Author(s):  
Tetsuya Ishikawa

The evolution of synchrotron radiation (SR) sources and related sciences is discussed to explain the ‘generation’ of the SR sources. Most of the contemporary SR sources belong to the third generation, where the storage rings are optimized for the use of undulator radiation. The undulator development allowed to reduction of the electron energy of the storage ring necessary for delivering 10 keV X-rays from the initial 6–8 GeV to the current 3 Gev. Now is the transitional period from the double-bend-achromat lattice-based storage ring to the multi-bend-achromat lattice to achieve much smaller electron beam emittance. Free electron lasers are the other important accelerator-based light sources which recently reached hard X-ray regime by using self-amplified spontaneous emission scheme. Future accelerator-based X-ray sources should be continuous wave X-ray free electron lasers and pulsed X-ray free electron lasers. Some pathways to reach the future case are discussed. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.


2008 ◽  
Vol 77 (7) ◽  
pp. 074501 ◽  
Author(s):  
Norihiro Sei ◽  
Kawakatsu Yamada ◽  
Hiroshi Ogawa

2017 ◽  
Vol 24 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Shuichi Okuda

The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.


2002 ◽  
Vol 41 (Part 1, No. 3A) ◽  
pp. 1595-1601 ◽  
Author(s):  
Norihiro Sei ◽  
Hideaki Ohgaki ◽  
Tomohisa Mikado ◽  
Kawakatsu Yamada

Author(s):  
Yusuke Furukawa ◽  
Tomoharu Nakazato ◽  
Marilou Cadatal ◽  
Minh Pham ◽  
Toshihiro Tatsumi ◽  
...  

1996 ◽  
Vol 53 (2) ◽  
pp. 1871-1889 ◽  
Author(s):  
M. E. Couprie ◽  
T. Hara ◽  
D. Gontier ◽  
P. Troussel ◽  
D. Garzella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document