Wide range frequency tuning in volume free electron lasers with rectangular resonator

Author(s):  
V.G. Baryshevsky ◽  
A.A. Gurinovich
2014 ◽  
Vol 369 (1647) ◽  
pp. 20130590 ◽  
Author(s):  
Jan Kern ◽  
Johan Hattne ◽  
Rosalie Tran ◽  
Roberto Alonso-Mori ◽  
Hartawan Laksmono ◽  
...  

X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel . This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL.


2020 ◽  
Vol 27 (2) ◽  
pp. 254-261 ◽  
Author(s):  
Yanwei Liu ◽  
Matthew Seaberg ◽  
Yiping Feng ◽  
Kenan Li ◽  
Yuantao Ding ◽  
...  

Wavefront sensing at X-ray free-electron lasers is important for quantitatively understanding the fundamental properties of the laser, for aligning X-ray instruments and for conducting scientific experimental analysis. A fractional Talbot wavefront sensor has been developed. This wavefront sensor enables measurements over a wide range of energies, as is common on X-ray instruments, with simplified mechanical requirements and is compatible with the high average power pulses expected in upcoming X-ray free-electron laser upgrades. Single-shot measurements were performed at 500 eV, 1000 eV and 1500 eV at the Linac Coherent Light Source. These measurements were applied to study both mirror alignment and the effects of undulator tapering schemes on source properties. The beamline focal plane position was tracked to an uncertainty of 0.12 mm, and the source location for various undulator tapering schemes to an uncertainty of 1 m, demonstrating excellent sensitivity. These findings pave the way to use the fractional Talbot wavefront sensor as a routine, robust and sensitive tool at X-ray free-electron lasers as well as other high-brightness X-ray sources.


2021 ◽  
Vol 77 (9) ◽  
pp. 1153-1167
Author(s):  
Isabelle Martiel ◽  
John H. Beale ◽  
Agnieszka Karpik ◽  
Chia-Ying Huang ◽  
Laura Vera ◽  
...  

Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.


1983 ◽  
Vol 44 (C1) ◽  
pp. C1-371-C1-371 ◽  
Author(s):  
J. C. Goldstein ◽  
W. B. Colson ◽  
R. W. Warren

2020 ◽  
Vol 23 (1) ◽  
pp. 66-71
Author(s):  
E. A. Gurnevich ◽  
I. V. Moroz

The Smith-Purcell radiation of a charged particle moving in a periodic structure is analysed theoretically. The considered structure consists of two planar diffraction gratings with different periods which are formed by parallel conducting wires. The analytical expression for the spectral-angular distribution of radiation is obtained. It is shown that the angular distribution of radiation can be made narrower by using two gratings instead of one, and radiation intensity can be manipulated by parallel relative shift of gratings. The obtained results are of great importance for the research and development of high power radiation sources based on volume free-electron lasers.


2016 ◽  
Vol 75 (10) ◽  
pp. 887-894 ◽  
Author(s):  
R. I. Bilous ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy ◽  
O. I. Khazov

1983 ◽  
Author(s):  
W. B. Colson ◽  
W. Becker ◽  
S. Benson ◽  
A. Bhowmik ◽  
R. Cover

Sign in / Sign up

Export Citation Format

Share Document