scholarly journals A Ferromagnetic Model of Neutron Stars and the Spin Evolution of Anomalous X-Ray Pulsars

2004 ◽  
Vol 112 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Koichi Takahashi
Keyword(s):  
X Ray ◽  
2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Shigeyuki Karino

Abstract The observed X-ray pulse period of OB-type high-mass X-ray binary (HMXB) pulsars is typically longer than 100 seconds. It is considered that the interaction between the strong magnetic field of a neutron star and the wind matter could cause such a long pulse period. In this study, we follow the spin evolution of neutron stars, taking into account the interaction between the magnetic field and wind matter. In this line, as new challenges, we solve the evolution of the magnetic field of the neutron star at the same time, and additionally we focus on the effects of the wind properties of the donor. As a result, evolutionary tracks were obtained in which the neutron star spends some duration in the ejector phase after birth, then rapidly spins down, becomes quasi-equilibrium, and gradually spins up. Such evolution is similar to previous studies, but we found that its dominant physics depends on the velocity of the donor wind. When the wind velocity is fast, the spin-down occurs due to magnetic inhibition, while the classical propeller effect and settling accretion shell causes rapid spin-down in the slow wind accretion. Since the wind velocity of the donor could depend on the irradiated X-ray luminosity, the spin evolution track of the neutron star in a wind-fed HMXB could be more complicated than considered.


2014 ◽  
Vol 28 ◽  
pp. 1460187 ◽  
Author(s):  
NAZAR IKHSANOV ◽  
NINA BESKROVNAYA ◽  
YURY LIKH

Study of observed spin evolution of long-period X-ray pulsars challenges quasi-spherical and Keplerian disk accretion scenarios. It suggests that the magnetospheric radius of the neutron stars is substantially smaller than Alfvén radius and the spin-down torque applied to the star from accreting material significantly exceeds the value predicted by the theory. We show that these problems can be avoided if the fossil magnetic field of the accretion flow itself is incorporated into the accretion model. The initially spherical flow in this case decelerates by its own magnetic field and converts into a non-Keplerian disk (magnetic slab) in which the material is confined by its intrinsic magnetic field ("levitates") and slowly moves towards the star on a diffusion timescale. Parameters of pulsars expected within this magneto-levitation accretion scenario are evaluated.


2004 ◽  
Vol 4 (4) ◽  
pp. 320-334 ◽  
Author(s):  
Fan Zhang ◽  
Xiang-Dong Li ◽  
Zhen-Ru Wang

Author(s):  
Yunus Emre Bahar ◽  
Manoneeta Chakraborty ◽  
Ersin Göğüş

Abstract We present the results of our extensive binary orbital motion corrected pulsation search for 13 low-mass X-ray binaries. These selected sources exhibit burst oscillations in X-rays with frequencies ranging from 45 to 1 122 Hz and have a binary orbital period varying from 2.1 to 18.9 h. We first determined episodes that contain weak pulsations around the burst oscillation frequency by searching all archival Rossi X-ray Timing Explorer data of these sources. Then, we applied Doppler corrections to these pulsation episodes to discard the smearing effect of the binary orbital motion and searched for recovered pulsations at the second stage. Here we report 75 pulsation episodes that contain weak but coherent pulsations around the burst oscillation frequency. Furthermore, we report eight new episodes that show relatively strong pulsations in the binary orbital motion corrected data.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


2003 ◽  
Vol 12 (05) ◽  
pp. 825-831 ◽  
Author(s):  
S. O. TAGIEVA ◽  
E. YAZGAN ◽  
A. ANKAY

We examined the fall-back disk models, and in general accretion, proposed to explain the properties of AXPs and SGRs. We checked the possibility of some gas remaining around the neutron star after a supernova explosion. We also compared AXPs and SGRs with the X-ray pulsars in X-ray binaries. We conclude that the existing models of accretion from a fall-back disk are insufficient to explain the nature of AXPs and SGRs.


2009 ◽  
Vol 708 (1) ◽  
pp. 910-910 ◽  
Author(s):  
V. I. Kondratiev ◽  
M. A. McLaughlin ◽  
D. R. Lorimer ◽  
M. Burgay ◽  
A. Possenti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document