scholarly journals Gravity from Poincare Gauge Theory of the Fundamental Particles. VI: -- Scattering Amplitudes --

1981 ◽  
Vol 66 (1) ◽  
pp. 318-336 ◽  
Author(s):  
K. Hayashi ◽  
T. Shirafuji
2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sabrina Pasterski ◽  
Andrea Puhm ◽  
Emilio Trevisani

Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ 0 1 2 1 3 2 2 we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘celestial diamonds’. This explicit construction is achieved using a wavefunction-based approach that allows us to map 4D scattering amplitudes to celestial CFT correlators of operators with SL(2,ℂ) conformal dimension ∆ and spin J. Radiative conformal primary wavefunctions have J = ±s and give rise to conformally soft theorems for special values of ∆ ∈ $$ \frac{1}{2}\mathbb{Z} $$ 1 2 ℤ . They are located either at the top of celestial diamonds, where they descend to trivial null primaries, or at the left and right corners, where they descend both to and from generalized conformal primary wavefunctions which have |J| ≤ s. Celestial diamonds naturally incorporate degeneracies of opposite helicity particles via the 2D shadow transform relating radiative primaries and account for the global and asymptotic symmetries in gauge theory and gravity.


2013 ◽  
Vol 28 (19) ◽  
pp. 1350084
Author(s):  
CHANG-HO KIM ◽  
SEUNG KOOK KIM ◽  
YOUNG-JAI PARK

We study the lowest-dimensional typical and atypical representations of SU(5/3) superalgebra as a possible unified gauge theory having a natural SU(5) subalgebra with SU(3) extra structure, which will be used to accommodate three generations of fundamental particles. By using Kac–Dynkin weight techniques, we find that all known quarks and leptons can be really accommodated in one atypical irreducible representation (irrep) of SU(5/3).


2004 ◽  
Vol 2004 (07) ◽  
pp. 032-032 ◽  
Author(s):  
Jun-Bao Wu ◽  
Chuan-Jie Zhu

Author(s):  
Andrew Hodges

A brief review is given of why twistor geometry has taken a central place in the theory of scattering amplitudes for fundamental particles. The emphasis is on the twistor diagram formalism as originally proposed by Penrose, the development of which has now led to the definition by Arkani-Hamed et al. of the ‘amplituhedron’.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nathan Moynihan

Abstract Using the principles of the modern scattering amplitudes programme, we develop a formalism for constructing the amplitudes of three-dimensional topologically massive gauge theories and gravity. Inspired by recent developments in four dimensions, we construct the three-dimensional equivalent of x-variables, first defined in [1], for conserved matter currents coupled to topologically massive gauge bosons or gravitons. Using these, we bootstrap various matter-coupled gauge-theory and gravitational scattering amplitudes, and conjecture that topologically massive gauge theory and topologically massive gravity are related by the double copy. To motivate this idea further, we show explicitly that the Landau gauge propagator on the gauge theory side double copies to the de Donder gauge propagator on the gravity side.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ricardo Monteiro ◽  
Donal O’Connell ◽  
David Peinador Veiga ◽  
Matteo Sergola

Abstract The three-point amplitude is the key building block in the on-shell approach to scattering amplitudes. We show that the classical objects computed by massive three-point amplitudes in gauge theory and gravity are Newman-Penrose scalars in a split-signature spacetime, where three-point amplitudes can be defined for real kinematics. In fact, the quantum state set up by the particle is a coherent state fully determined by the three-point amplitude due to an eikonal-type exponentiation. Having identified this simplest classical solution from the perspective of scattering amplitudes, we explore the double copy of the Newman-Penrose scalars induced by the traditional double copy of amplitudes, and find that it coincides with the Weyl version of the classical double copy. We also exploit the Kerr-Schild version of the classical double copy to determine the exact spacetime metric in the gravitational case. Finally, we discuss the direct implication of these results for Lorentzian signature via analytic continuation.


Sign in / Sign up

Export Citation Format

Share Document