Orogenesis in action: tectonics and processes at the west equatorial Pacific margin

1991 ◽  
Vol 148 (2) ◽  
pp. 415-416
Author(s):  
ROBERT HALL
2017 ◽  
Vol 30 (11) ◽  
pp. 4207-4225 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann ◽  
David S. Battisti

Abstract The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.


2004 ◽  
Vol 26 (2) ◽  
pp. 175-185
Author(s):  
Chan-Min Yoo ◽  
Ki-Seong Hyeong ◽  
Jai-Woon Moon ◽  
Ki-Hyune Kim ◽  
Sang-Bum Chi

1987 ◽  
Vol 28 (2) ◽  
pp. 295-306 ◽  
Author(s):  
W. H. Berger ◽  
J. S. Killingley ◽  
E. Vincent

AbstractAn evaluation of both published and new oxygen isotope and radiocarbon data from the west equatorial Pacific (7 box cores, 2 piston cores, 2 gravity cores) indicates that there was no significant input of meltwater to the ocean before 14,000 14C yr B.P. This finding is in conflict with various early deglaciation scenarios suggested several years ago on the basis of Wisconsin/Holocene transition records from the Atlantic, but agrees with late-onset scenarios proposed more recently, both for Pacific and Atlantic deglaciation records.


2014 ◽  
pp. 257-260
Author(s):  
Osamu Kazaoka ◽  
Hisashi Nirei ◽  
Nobuyuki Aida ◽  
Hisao Kumai ◽  
Martin J. Head ◽  
...  

2007 ◽  
Vol 37 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
Allan J. Clarke ◽  
Stephen Van Gorder ◽  
Giuseppe Colantuono

Abstract Discharge and recharge of the warm water volume (WWV) above the 20°C isotherm in an equatorial Pacific Ocean box extending across the Pacific from 156°E to the eastern ocean boundary between latitudes 5°S and 5°N are key variables in ENSO dynamics. A formula linking WWV anomalies, zonally integrated wind stress curl anomalies along the northern and southern edges of the box, and flow into the western end of the box is derived and tested using monthly data since 1993. Consistent with previous work, a WWV balance can only be achieved if the 20°C isotherm surface is not a material surface; that is, warm water can pass through it. For example, during El Niño, part of the WWV anomaly entering the box is cooled so that it is less than 20°C and therefore passes out of the bottom of the box, the 20°C isotherm surface. The observations suggest that the anomalous volume passing through the 20°C isotherm is approximately the same as T ′W, the anomalous WWV entering the western end of the box. Therefore the observed WWV anomaly can be regarded as being driven by the anomalous wind stress curl along the northern and southern edges of the box. The curl anomaly changes the WWV both by divergent meridional flow at the edges of the box and vortex stretching; that is, the Sverdrup balance does not hold in the upper ocean. A typical amplitude for the rate of change of WWV for the 5°S–5°N box is 9.6 Sv (Sv ≡ 106 m3 s−1). The wind stress curl anomaly and the transport anomaly into the western end of the box are highly correlated with the El Niño index Niño-3.4 [the average sea surface temperature anomaly (SSTA) over the region 5°S–5°N, 170°–120°W] and Niño-3.4 leads minus the WWV anomaly by one-quarter of a cycle. Based on the preceding results, a simple discharge/recharge coupled ENSO model is derived. Only water warmer than about 27.5°–28°C can give rise to deep atmospheric convection, so, unlike past discharge/recharge oscillator models, the west-central rather than eastern equatorial SSTAs are emphasized. The model consists of two variables: T ′, the SSTA averaged over the region of strong ENSO air–sea interaction in the west-central Pacific equatorial strip 5°S–5°N, 156°E–140°W and D′, the 20°C isotherm depth anomaly averaged over the same region. As in the observations, T ′ lags D′ by one-quarter of a cycle; that is, ∂T ′/∂t = νD′ for some positive constant ν. Physically, when D′ > 0, the thermocline is deeper and warmer water is entrained through the base of the mixed layer, the anomalous heat flux causing ∂T ′/∂t > 0. Also, when D′ > 0, the eastward current anomaly is greater than zero and warm water is advected into the region, again causing ∂T ′/∂t > 0. Opposite effects occur for D′ < 0. A second relationship between T ′ and D′ results because the water is warm enough that T ′ causes deep atmospheric convection anomalies that drive the wind stress curl anomalies that change the heat storage ∂D′/∂t. The atmosphere responds essentially instantly to the T ′ forcing and the curl causes a discharge of WWV during El Niño (T ′ > 0) and recharge during La Niña (T ′ < 0), so ∂D′/∂t = −μT ′ for some positive constant μ. The two relationships between T ′ and D′ result in a harmonic oscillator with period 2π/νμ ≈ 51 months.


Sign in / Sign up

Export Citation Format

Share Document