Fault and fracture characteristics of a major fault zone in the northern North Sea: analysis of 3D seismic and oriented cores in the Brage Field (Block 31/4)

1998 ◽  
Vol 127 (1) ◽  
pp. 209-229 ◽  
Author(s):  
R. K. Aarland ◽  
J. Skjerven
2020 ◽  
Author(s):  
Christine Batchelor ◽  
Dag Ottesen ◽  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Helge Løseth ◽  
...  

<p>The North Sea has arguably the most extensive geophysical data coverage of any glacier-influenced sedimentary regime on Earth, enabling detailed investigation of the thick (up to 1 km) sequence of Quaternary sediments that is preserved within the North Sea Basin. At the start of the Quaternary, the bathymetry of the northern North Sea was dominated by a deep depression that provided accommodation for sediment input from the Norwegian mainland and the East Shetland Platform. Here we use an extensive database of 2D and 3D seismic data to investigate the geological development of the northern North Sea through the Quaternary.</p><p>Three main sedimentary processes were dominant within the northern North Sea during the early Quaternary: 1) the delivery and associated basinward transfer of glacier-derived sediments from an ice mass centred over mainland Norway; 2) the delivery of fluvio-deltaic sediments from the East Shetland Platform; and 3) contourite deposition and the reworking of sediments by contour currents. The infilling of the North Sea Basin during the early Quaternary increased the width and reduced the water depth of the continental shelf, facilitating the initiation of the Norwegian Channel Ice Stream.</p>


2020 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Sunil Vadakkepuliyambatta ◽  
Stefan Buenz ◽  
Christine Batchelor ◽  
...  

<p>Sediments deposited by marine-based ice sheets are dominantly fine-grained glacial muds, which are commonly known for their sealing properties for migrating fluids. However, the Peon and Aviat hydrocarbon discoveries in the North Sea show that coarse-grained glacial sands can occur over large areas in formerly glaciated continental shelves. In this study, we use conventional and high-resolution 2D and 3D seismic data combined with well information to present new models for large-scale fluid accumulations within the shallow subsurface of the Norwegian Continental Shelf. The data include 48,000 km<sup>2</sup> of high-quality 3D seismic data and 150 km<sup>2</sup> of high-resolution P-Cable 3D seismic data, with a vertical resolution of 2 m and a horizontal resolution of 6 to 10 m in these data sets. We conducted horizon picking, gridding and attribute extractions as well as seismic geomorphological interpretation, and integrated the results obtained from the seismic interpretation with existing well data.</p><p>The thicknesses of the Quaternary deposits vary from hundreds of meters of subglacial till in the Northern North Sea to several kilometers of glacigenic sediments in the North Sea Fan. Gas-charged, sandy accumulations are characterized by phase-reserved reflections with anomalously high amplitudes in the seismic data as well as density and velocity decreases in the well data. Extensive (>10 km<sup>2</sup>) Quaternary sand accumulations within this package include (i) glacial sands in an ice-marginal outwash fan, sealed by stiff glacial tills deposited by repeated glaciations (the Peon discovery in the Northern North Sea), (ii) sandy channel-levee systems sealed by fine-grained mud within sequences of glacigenic debris flows, formed during shelf-edge glaciations, (iii) fine-grained glacimarine sands of contouritic origin sealed by gas hydrates, and (iv) remobilized oozes above large evacuation craters and sealed by megaslides and glacial muds. The development of the Fennoscandian Ice Sheet resulted in a rich variety of depositional environments with frequently changing types and patterns of glacial sedimentation. Extensive new 3D seismic data sets are crucial to correctly interpret glacial processes and to analyze the grain sizes of the related deposits. Furthermore, these data sets allow the identification of localized extensive fluid accumulations within the Quaternary succession and distinguish stratigraphic levels favorable for fluid accumulations from layers acting as fluid barriers.</p>


2010 ◽  
Vol 167 (6) ◽  
pp. 1225-1236 ◽  
Author(s):  
Christopher A.-L. Jackson ◽  
Henrike Grunhagen ◽  
John A. Howell ◽  
Ane L. Larsen ◽  
Annika Andersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document