Quaternary evolution of the northern North Sea

Author(s):  
Christine Batchelor ◽  
Dag Ottesen ◽  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Helge Løseth ◽  
...  

<p>The North Sea has arguably the most extensive geophysical data coverage of any glacier-influenced sedimentary regime on Earth, enabling detailed investigation of the thick (up to 1 km) sequence of Quaternary sediments that is preserved within the North Sea Basin. At the start of the Quaternary, the bathymetry of the northern North Sea was dominated by a deep depression that provided accommodation for sediment input from the Norwegian mainland and the East Shetland Platform. Here we use an extensive database of 2D and 3D seismic data to investigate the geological development of the northern North Sea through the Quaternary.</p><p>Three main sedimentary processes were dominant within the northern North Sea during the early Quaternary: 1) the delivery and associated basinward transfer of glacier-derived sediments from an ice mass centred over mainland Norway; 2) the delivery of fluvio-deltaic sediments from the East Shetland Platform; and 3) contourite deposition and the reworking of sediments by contour currents. The infilling of the North Sea Basin during the early Quaternary increased the width and reduced the water depth of the continental shelf, facilitating the initiation of the Norwegian Channel Ice Stream.</p>

2020 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Sunil Vadakkepuliyambatta ◽  
Stefan Buenz ◽  
Christine Batchelor ◽  
...  

<p>Sediments deposited by marine-based ice sheets are dominantly fine-grained glacial muds, which are commonly known for their sealing properties for migrating fluids. However, the Peon and Aviat hydrocarbon discoveries in the North Sea show that coarse-grained glacial sands can occur over large areas in formerly glaciated continental shelves. In this study, we use conventional and high-resolution 2D and 3D seismic data combined with well information to present new models for large-scale fluid accumulations within the shallow subsurface of the Norwegian Continental Shelf. The data include 48,000 km<sup>2</sup> of high-quality 3D seismic data and 150 km<sup>2</sup> of high-resolution P-Cable 3D seismic data, with a vertical resolution of 2 m and a horizontal resolution of 6 to 10 m in these data sets. We conducted horizon picking, gridding and attribute extractions as well as seismic geomorphological interpretation, and integrated the results obtained from the seismic interpretation with existing well data.</p><p>The thicknesses of the Quaternary deposits vary from hundreds of meters of subglacial till in the Northern North Sea to several kilometers of glacigenic sediments in the North Sea Fan. Gas-charged, sandy accumulations are characterized by phase-reserved reflections with anomalously high amplitudes in the seismic data as well as density and velocity decreases in the well data. Extensive (>10 km<sup>2</sup>) Quaternary sand accumulations within this package include (i) glacial sands in an ice-marginal outwash fan, sealed by stiff glacial tills deposited by repeated glaciations (the Peon discovery in the Northern North Sea), (ii) sandy channel-levee systems sealed by fine-grained mud within sequences of glacigenic debris flows, formed during shelf-edge glaciations, (iii) fine-grained glacimarine sands of contouritic origin sealed by gas hydrates, and (iv) remobilized oozes above large evacuation craters and sealed by megaslides and glacial muds. The development of the Fennoscandian Ice Sheet resulted in a rich variety of depositional environments with frequently changing types and patterns of glacial sedimentation. Extensive new 3D seismic data sets are crucial to correctly interpret glacial processes and to analyze the grain sizes of the related deposits. Furthermore, these data sets allow the identification of localized extensive fluid accumulations within the Quaternary succession and distinguish stratigraphic levels favorable for fluid accumulations from layers acting as fluid barriers.</p>


2017 ◽  
Author(s):  
Kenneth Samuel Okiongbo ◽  
Righteous Ombu

Abstract. In the Southern North Sea, 3D seismic data had been widely acquired to explore for hydrocarbons, but interpretations of these datasets until now focus mainly on the deep exploration targets of the petroleum companies. Less attention is given to shallow sediments. But these sediments often contain channels that can serve as potential reservoir units. Thus the mapping and identification of these shallow channels and defining their infill lithology is important. In this study, seismic spectral decomposition technique has been used to delineate shallow thin channel geometry in a 3D seismic data acquired in the Dutch sector of the North Sea. The concurrent interpretation of curvature and coherence cubes with seismic facies analysis based on reflection terminations and geometry, amplitude and continuity enables the discrimination between shale versus sand filled channels. The results of the spectral decomposition show two distinct low sinuosity channel features in NNE–SSW direction but becomes diffuse towards the North. The strong negative curvature anomaly along the channels's axes observed in the most negative curvature attribute implies that the sediments within the channels have undergone more compaction. These strong negative curvature anomalies are interpreted to be due to differential compaction of shale filled channels.


2021 ◽  
Author(s):  
James Kirkham ◽  
Kelly Hogan ◽  
Robert Larter ◽  
Ed Self ◽  
Ken Games ◽  
...  

<p>The geological record of landforms produced beneath deglaciating ice sheets offers insights into otherwise inaccessible subglacial processes. Large subglacial channels formed by meltwater erosion of sediments (tunnel valleys) are widespread in formerly glaciated regions such as the North Sea. These features have the potential to inform basal melt rate parameterisations, realistic water routing and the interplay between basal hydrology and ice dynamics in numerical ice‑sheet models; however, the mechanisms and timescales over which tunnel valleys form remain poorly understood. Here, we present a series of modelling experiments, informed by geophysical observations from novel high-resolution 3D seismic data (6.25 m bin size, ~3.5 m vertical resolution), which test different hypotheses of tunnel valley formation and calculate the rates at which these features likely form beneath deglaciating ice sheets. Reconstructions of the former British-Irish and Fennoscandian ice sheets from a 3D thermomechanical ice‑sheet model (BRITICE CHRONO version 2) are used to calculate subglacial water routing and steady-state water discharges as these ice sheets retreated across the North Sea Basin during the last glaciation. Using these simulations, we calculate potential meltwater channel erosion rates and estimate how quickly tunnel  valleys are formed beneath deglaciating ice sheets in warmer than present-day climates. We find little evidence for widespread water ponding which may have led to channel formation through outburst floods. Instead, our results demonstrate that seasonal surface melt delivered to the bed could incise large channels of comparable dimensions to tunnel valleys over timescales of several hundred years as these ice sheets deglaciated.  </p>


2020 ◽  
Author(s):  
Torsten Hundebøl Hansen ◽  
Ole Rønø Clausen

<p>During Cretaceous and Paleogene times, tectonic shortening caused mild basin inversion of earlier rifting depocentres in the Danish Central Graben. This exerted an important control on the thickness variations and geometries of e.g. the Late-Cretaceous and Danian Chalk Group. Structural highs formed by inversion and especially Permian-salt movements, host important hydrocarbon reservoirs in the sector. Earlier researchers have linked basin inversion in the North-Sea area to Alpine deformational phases and the onset of seafloor spreading in the North Atlantic.</p><p>The objective of this 3D seismic-data study is an analysis of the relationships between basement (sub-salt) faults, salt movements, and salt-cover deformation, as well as fluid migration near and within inversion structures.</p><p>We find that the northeastern margin of the larger inverted area generally has a thick-skinned style. Here, reverse reactivation of the rift-bounding master fault is coupled between the strata above and below the salt. Oppositely, the southwestern margin has a thin-skinned style. Here, buttressed hangingwall folds sit above reverse faults detaching into even thin evaporite sequences. The strike of this cover-fault trend mimics that of the underlying basement faults, although they dip in opposite directions. A triangle-zone model explains how sub-salt shortening (reactivation of major basement faults) can be balanced to the shortening observed in the sedimentary cover. As the current thickness of Permian salt increases and mobile-salt structures become predominant towards the south, the effects of basin inversion grow difficult to distinguish from those of halokinesis.</p><p>Interestingly, the shallow crests of inversion folds, especially along the southwestern margin, host groups of smaller normal faults. These formed to some degree during inversion, indicating that local extensional tectonism (crestal collapse) took place during the overall shortening. We conclude that the shallow parts of the folds experienced forced bending rather than buckling during folding.</p><p>A significant number of hydrocarbon reservoirs sit within basin-inversion structures. Potentially, this work can increase our understanding of deformation within these and similar structures.</p><p><em>Acknowledgements: We thank the Centre for Oil and Gas – DTU (DHRTC) for funding and supporting this project and for providing data. We also thank Schlumberger and Eliis for providing seismic-interpretation software.</em></p>


1992 ◽  
Vol 10 (4-5) ◽  
pp. 281-299 ◽  
Author(s):  
A. Booth ◽  
F.J. Stockley ◽  
J.A. Robbins

Interpretation of regional seismic data and analysis of available well data from the North Viking Graben suggest that a significant phase of structural inversion took place in the Late Jurassic and also in the early Cretaceous. It is believed that this inversion may be a consequence either of compression of the basin as a whole or alternatively, transpressional uplift along offset NW-SE fault systems. The north-south trending Penguin Ridge in UKCS quadrant 211 is interpreted as being such an inversion feature. The Penguin Ridge may well be an extreme example of apparent compression within the context of the Northern North Sea. However, it is clear that less well-developed structures of a similar type have previously been interpreted as simple extensional fault blocks. A compressional or transpressional mode of formation has implications for both reservoir diagenesis and faulting and thus important consequences for exploration play evaluation. It is also proposed that the Penguin Ridge is the northerly limit of a north-south trend or fairway in which compressional features can be observed from regional and field specific seismic data. Certainly there are many anomalous structures within the complex crestal areas of the majority of the Brent Province fields. The impact of such a model is the subject of continuing studies, but it is clear that as the search for more subtle plays intensifies in mature exploration areas such as the North Sea, it is important that the explorationist keeps an open mind, especially when confronted with apparently anomalous data.


1998 ◽  
Vol 1 (05) ◽  
pp. 476-484 ◽  
Author(s):  
Richard Morgan ◽  
Colm Murphy

This paper (SPE 51828) was revised for publication from paper SPE 38503, first presented at the 1997 SPE Offshore Europe Conference, Aberdeen, 9-12 September. Original manuscript received for review 9 September 1997. Revised manuscript received 6 July 1998. Paper peer approved 10 July 1998. Summary Fundamental geological and environmental differences exist between the basins of the North Sea and the basins of the northwest European continental margin, and strategies for success in the North Sea have not necessarily transferred directly to the continental margin. As a result, exploration outcomes to date have been somewhat disappointing, with one or two notable exceptions. Furthermore, a change in the approach to acreage evaluation places increasing levels of reliance on seismic data, specifically three-dimensional (3D) data, to tie down prospects before drilling. This approach focuses down rapidly to the prospect scale, and, although allowing detailed analysis of target structures, there is a risk of creating a gap in understanding between the geological processes observed at the basin scale and those at the prospect scale. A strategy to bridge this gap has drawn upon the wider family of geophysical data, namely gravity and magnetic data, in conjunction with a conventional, broad, regional grid of two-dimensional (2D) seismic data. These data have been worked together to construct a basin scale framework into which 3D seismic data acquisition can be planned and the results interpreted.At the regional scale, satellite-derived gravity coverage has enabled the removal of the effects of Tertiary seafloor spreading, allowing structures on the northwest European continental margin to be viewed in context with the geology of East Greenland.At the basin scale, basinal elements have been identified and correlated among seismic, gravity, and magnetic data. Controlling faults have been mapped, and the timing of basin formation inferred from trend and geometry, with implications for source rock distribution.At the license block scale, the segmentation of basin margins has been revealed by high spatial resolution magnetic data with implications for both trapping potential and the control of sediment supply into the basins. The fusion of interpretations made from the different types of geophysical data creates a scale of observation range that stretches from tectonic plates to prospective structures. The resulting geological framework has sufficient scale overlap to relate immediately to the level of detail available from 3D seismic data. Moreover, the broader perspective may ensure that those seismic data are acquired in the correct part of the basin in the first place. P. 476


Author(s):  
A.V. Zarkhidze ◽  
Y. Abbas ◽  
P.E. Dhelie ◽  
V. Danielsen ◽  
J.E. Lie

Sign in / Sign up

Export Citation Format

Share Document