Cumulates and gabbros in southern Albanian ophiolites: their bearing on regional tectonic setting

2006 ◽  
Vol 260 (1) ◽  
pp. 267-299 ◽  
Author(s):  
F. Koller ◽  
V. Hoeck ◽  
T. Meisel ◽  
C. Ionescu ◽  
K. Onuzi ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


Author(s):  
Jemi Saputra Ahnaf ◽  
Aton Patonah ◽  
Haryadi Permana

This research aimed to reveal the petrogenesis of granitic rocks of Bayah Complex starting from magma differentiation to exposing event, this research also intended to determine the tectonic environment. The methods carried out in this research include field observation, petrographic analysis using polarized light microscopy, and geochemical analysis using X-Ray Fluorescence (XRF) and Inductively Coupled Mass Spectrometry (ICP-MS). Petrographic analysis shows that Bayah granitic rocks are composed of quartz, plagioclase, and K-feldspar while the rest are amphibole, biotite, sericite, chlorite, epidote, and opaque. Based on its major oxide concentrations, Bayah granitic rocks classified as granite and diorite-quartz which have high-K calc-alkaline magma. 4 samples of granitic rocks showed the A/N+K+C > 1 molar ratios belonging to the peraluminous S-type granite index while the remaining 1 sample showed a molar ratio of A/N+ K+C < 1 and A/N+K > 1 which classified as metaluminous I-type granite. Accordingly, Bayah granitic rocks are S-type granite which crystallized from sediment-derived magma, the sediments itself estimated sourced from continental especially Malay Peninsula, Indonesian Tin Island, and Schwaner Mountains. During differentiation, the magma undergone crustal contamination reflected by the increase in both SiO2 0.51 wt% and Al2O3 1.95 wt%, and decrease in Fe2O3 + MgO 0.61 wt% from the pure composition of sediment-derived magma. Furthermore, the occurrence of crustal contamination also recognized from high concentrations of Rb and Ba which indicate the interaction of magma with the materials of continental crust. Regard to the exposing event, Bayah granitic rocks approximated to be exposed due to regional tectonic activity which caused Orogenesa I in the Early Oligocene to the Late Oligocene. Moreover, based on the plot of trace elements especially Rb, Y, Nb, Ta, and Yb on Harker and tectonic discriminant diagrams, Bayah granitic rocks are formed on volcanic-arc active continental margins in accordance with regional tectonic setting.           


Sign in / Sign up

Export Citation Format

Share Document