scholarly journals New seismological data from the Calabrian arc reveal arc-orthogonal extension across the subduction zone

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.

2021 ◽  

Mesozoic plate convergence in SE Sundaland has been a source of debate for decades. A determination of plate convergence boundaries and timing have been explained in many publications, but not all boundaries were associated with magmatism. Through integration of both plate configurations and magmatic deposits, the basement can be accurately characterized over time and areal extents. This paper will discuss Cretaceous subductions and magmatic arc trends in SE Sundaland area with additional evidence found in JS-1 Ridge. At least three subduction trends are captured during the Mesozoic in the study area: 1) Early Jurassic – Early Cretaceous trend of Meratus, 2) Early Cretaceous trend of Bantimala and 3) Late Cretaceous trend in the southernmost study area. The Early Jurassic – Early Cretaceous subduction occurred along the South and East boundary of Sundaland (SW Borneo terrane) and passes through the Meratus area. The Early Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo and Paternoster terranes) and pass through the Bantimala area. The Late Cretaceous subduction occurred along South and East boundary of Sundaland (SW Borneo, Paternoster and SE Java – South Sulawesi terranes), but is slightly shifted to the South approaching the Oligocene – Recent subduction zone. Magmatic arc trends can also be generally grouped into three periods, with each period corresponds to the subduction processes at the time. The first magmatic arc (Early Jurassic – Early Cretaceous) is present in core of SW Borneo terrane and partly produces the Schwaner Magmatism. The second Cretaceous magmatic arc (Early Cretaceous) trend is present in the SW Borneo terrane but is slightly shifted southeastward It is responsible for magmatism in North Java offshore, northern JS-1 Ridge and Meratus areas. The third magmatic arc trend is formed by Late Cretaceous volcanic rocks in Luk Ulo, the southern JS-1 Ridge and the eastern Makassar Strait areas. These all occur during the same time within the Cretaceous magmatic arc. Though a mélange rock sample has not been found in JS-1 Ridge area, there is evidence of an accretionary prism in the area as evidenced by the geometry observed on a new 3D seismic dataset. Based on the structural trend of Meratus (NNE-SSW) coupled with the regional plate boundary understanding, this suggests that both Meratus & JS-1 Ridge are part of the same suture zone between SW Borneo and Paternoster terranes. The gradual age transition observed in the JS-1 Ridge area suggests a southward shift of the magmatic arc during Early Cretaceous to Late Cretaceous times.


2001 ◽  
Vol 34 (4) ◽  
pp. 1405
Author(s):  
Γ. Δ. ΔΑΝΑΜΟΣ ◽  
Ε. Λ. ΛΕΚΚΑΣ ◽  
Σ. Γ. ΛΟΖΙΟΣ

The Jan. 26, 2001, Ms=7.7 earthquake occurred in Gujarat region of W. India, which lies 200-400 Km away from the active plate boundary zone, between the Indian subcontinent and the Asian plate, along the India-Pakistan border and the Himalayan belt. An Ms=7.7±0.2 earthquake also occurred in the same region in 1819. A zone of co-seismic E-W surface ruptures, 30-40 Km long and 15-20 Km wide, observed near the epicentral area and seems to be associated with pre-existing reverse faults and thrust folds, which were partially reactivated during the recent earthquake. Except the reverse vertical displacement a significant right lateral displacement was also observed along these E-W surface ruptures. This Ms=7.7 seismic event has been also accompanied by a large scale flexural-slip folding, as the absence of significant co-seismic fault displacement and fault scarp shows. This type of compressional tectonic deformation is also confirmed by the focal mechanism of the earthquake and the seismo-tectonic "history" of the area. The NW-SE open cracks, also observed along the same zone, are associated with the right lateral horizontal displacement of the reactivated fault (or branch faults) and the development of local extensional stress field in the huge anticlinic hinges of the co-seismic flexural-slip folds. A large number of ground ruptures, failures and open cracks are also associated with extensive sand boils, liquefaction phenomena and lateral spreading.


2021 ◽  
Author(s):  
Donato Talone ◽  
Rita de Nardis ◽  
Giusy Lavecchia ◽  
Luca De Siena

<p>Seismic tomography can be applied to different scales. Over the last two decades, monitoring systems, technical innovations and methodologies have substantially improved, resulting in accurate tomographic images at the global and local scales. Nowadays it is easy to perform travel-time tomography with local seismicity thanks to the increasing density of seismic stations. Nevertheless, it is unlikely to have earthquakes that properly cover the whole studied area at the requested depths. For this reason, many tomographic images are obtained with teleseisms and both far and local earthquakes.</p><p>Here, we realized a Local Earthquake Tomography (LET) in an area of high seismic hazard in central-southern Italy, extending from L’Aquila to Benevento, to benchmark the iterative non-linear Fast-Marching code FMTOMO (Rawlinson and Sambridge, 2004) at intracontinental scale. The primary aim is to analyse and discuss the influence of both the inversion parameters and the grid sizes on the inversion results. Special attention was devoted to setting damping factors and smoothing parameters and to study how they can affect the tomographic images and their reliability.</p><p>We used 5712 local events (0.2<ML<5.1) recorded by 38 stations of the Italian Seismic network; we jointly inverted 71221 P and S arrival times to obtain Vp and Vs model. We selected earthquakes having: (1) a root-mean-square (RMS) residual less than 0.5 s, (2) more than 10 phases (P and S), (3) azimuth gap less than 180, (4) residual of each phase less than 0.5 s, (5) a depth between 0.5 and 30 km.<span> </span><span>We used a single layer of 35 km in depth and a grid area extending 162 km in latitude and 245 km in longitude with a node spacing of about 5 km in each direction. As a starting velocity model, we </span><span>chose</span><span> a mono-dimensional one of Trionfera et al. (2020).</span></p><p>Using these well-localized earthquakes, we observed low residuals variability despite a full investigation of damping and smoothing parameters. Furthermore, the regularization parameters we obtained are one or two order of magnitude lower than those estimated at the wider scales.</p><p>Because of the uncertainties in the depth of events, the fast-marching code needs several nodes above and below the grid set for earthquakes to move sources during each hypocentral inversion. As a consequence, when inverting for both velocity and hypocentral location, FMTOMO performs the calculation even for a wide boundary area without earthquakes, which causes a loss of computational speed.</p><p>After properly tuning the inversion parameters, FMTOMO gives reliable and high-resolution tomographic images. We found a good agreement with surface geology and regional tectonic structures, demonstrating that the code works well in areas with such complex geology.</p>


2020 ◽  
Author(s):  
Alina Polonia ◽  
Sgroi Tiziana ◽  
Artoni Andrea ◽  
Barberi Graziella ◽  
Billi Andrea ◽  
...  

<p>The Calabria Arc (CA) is the narrowest subduction-rollback system on Earth, and it has been struck repeatedly by destructive historical earthquakes often associated with tsunamis. In spite of the detailed earthquake catalogue, the source parameters of most historic earthquakes are still debated, especially for earthquakes that may have been generated offshore.</p><p>The subduction system is characterized by an irregular plate boundary reflecting the presence of continental blocks, indenters, and different rates of continental collision. Convergence between Eurasia and Africa produces both compressive and transtensional deformation in the offshore accretionary complex. Shortening occurs along the outer deformation front and along splay faults accommodating differences in rheology and basal detachment depth. Two oppositely dipping strike-slip/transtensional fault systems, i.e., the Ionian (IF) and Alfeo-Etna (AEF) faults produce deep fragmentation of the subduction system and the collapse of the accretionary wedge, in agreement with geodetic models suggesting plate divergence in this region. Transtensional lithospheric faults segmenting the subduction system are punctuated by mantle-rooted diapirism driven by arc orthogonal rifting, collapse of the accretionary wedge, and deep fragmentation of the subduction system along pre-existing Mesozoic transform faults.</p><p>Seismological observations in the Western Ionian Sea highlight the presence of earthquake clusters along wide and deep-seated active tectonic structures, which were proposed as likely seismogenic sources for large magnitude historic earthquakes/tsunamis in the region. Low to moderate magnitude earthquakes occurring offshore were relocated using a new 1D velocity model for the Ionian Sea, constrained by geological and geophysical observations, which included data collected by NEMO-SN1 seafloor observatory. Seismological data from NEMO-SN1 were integrated with observations carried out by over 100 land stations of the INGV network, and led us to compile a map of 3D distribution for over 2600 events. 3D locations and focal mechanism analyses allowed us to highlight local lithospheric structure. Although seismicity appears scattered in a wide corridor of deformation within the subduction system, we observe alignments of events along main fault systems with strike-slip and extensional mechanisms. Moreover, results from seismological data analysis, i.e., misfits in the 3D distribution of hypocenters and tomographic maps, could be explained by the presence of an anomalous area between the two structures, characterized by thinned lithosphere probably caused by incipient rifting, as suggested by seismic reflection images and geodynamic interpretations.  </p>


Author(s):  
Mustapha Meghraoui ◽  
Frederic Masson ◽  
Nejib Bahrouni ◽  
Abdelilah Tahayt ◽  
Mohamed Saleh ◽  
...  

<p>The Maghrebian tectonic domain in North Africa is here examined in the light of the recent GPS and seismotectonic results. The region includes the plate boundary in the western Mediterranean previously characterized by transpression and block rotation. The crustal deformation is documented along the Atlas Mountains in terms of the displacement field, with strain partitioning largely controlled by plate motions. The tectonic and seismotectonic analysis is based on our published data on shortening directions of Quaternary faulting and folding compared with present-day seismotectonic characteristics (earthquake moment tensors) of significant seismic events that allow an estimate of local and regional deformation rates in North Africa. Shortening directions oriented NE-SW to NW-SE for the Pliocene and Quaternary, respectively, and the S shape of the Quaternary anticline axes are in agreement with the 2°/Myr to 4°/Myr clockwise rotation obtained from paleomagnetic results on small tectonic blocks in the Tell Atlas. The continuous GPS data and results are obtained from the network in Morocco operative 1999 to 2006, the REGAT network in Algeria since 2007, and the network in Tunisia with data collected from 2014 to 2018. In addition, we add the most recent GPS results in southern Spain and southern Italy. The NW-SE to NNW-SSE 5 ±1.5 mm/yr convergence velocity and strain distribution of the Maghrebian tectonic domain is controlled by crustal block tectonics driven by E-W trending right-lateral faulting and NE-SW thrust-related folding. The correlation between the active transpression tectonic structures and velocity field shows a geodynamic framework consistent with the oblique plate convergence of Africa towards Eurasia. </p>


2021 ◽  
Author(s):  
Francesca D’Ajello Caracciolo ◽  
Rodolfo Console

AbstractA set of four magnitude Ml ≥ 3.0 earthquakes including the magnitude Ml = 3.7 mainshock of the seismic sequence hitting the Lake Constance, Southern Germany, area in July–August 2019 was studied by means of bulletin and waveform data collected from 86 seismic stations of the Central Europe-Alpine region. The first single-event locations obtained using a uniform 1-D velocity model, and both fixed and free depths, showed residuals of the order of up ± 2.0 s, systematically affecting stations located in different areas of the study region. Namely, German stations to the northeast of the epicenters and French stations to the west exhibit negative residuals, while Italian stations located to the southeast are characterized by similarly large positive residuals. As a consequence, the epicentral coordinates were affected by a significant bias of the order of 4–5 km to the NNE. The locations were repeated applying a method that uses different velocity models for three groups of stations situated in different geological environments, obtaining more accurate locations. Moreover, the application of two methods of relative locations and joint hypocentral determination, without improving the absolute location of the master event, has shown that the sources of the four considered events are separated by distances of the order of one km both in horizontal coordinates and in depths. A particular attention has been paid to the geographical positions of the seismic stations used in the locations and their relationship with the known crustal features, such as the Moho depth and velocity anomalies in the studied region. Significant correlations between the observed travel time residuals and the crustal structure were obtained.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 125
Author(s):  
Giacomo Prosser ◽  
Giuseppe Palladino ◽  
Dario Avagliano ◽  
Francesco Coraggio ◽  
Eleonora Maria Bolla ◽  
...  

This paper shows the main results of a multidisciplinary study performed along the southeastern sector of the Agri Valley in Basilicata (Southern Italy), where Cenozoic units, crucial for constraining the progressive evolution of the Southern Apennine thrust and fold belt and, more in general, the geodynamic evolution of the Mediterranean area are widely exposed. In particular, we aimed at understanding the stratigraphic and tectonic setting of deep-sea, thrust-top Cenozoic units exposed immediately to north of Montemurro, between Costa Molina and Monte dell’Agresto. In the previous works different units, showing similar sedimentological characteristics but uncertain age attribution, have been reported in the study area. In our study, we focussed on the Albidona Formation, pertaining to the Liguride realm, which shows most significant uncertainties regarding the age and the stratigraphic setting. The study was based on a detailed field survey which led to a new geological map of the area. This was supported by new stratigraphic, biostratigraphic and structural analyses. Biostratigraphic analysis provided an age not older than the upper Ypresian and not younger than the early Priabonian. Recognition of marker stratigraphic horizons strongly helped in the understanding of the stratigraphy of the area. The study allowed a complete revision of the stratigraphy of the outcropping Cenozoic units, the recognition of until now unknown tectonic structures and the correlation between surface and subsurface geology.


2006 ◽  
Vol 260 (1) ◽  
pp. 267-299 ◽  
Author(s):  
F. Koller ◽  
V. Hoeck ◽  
T. Meisel ◽  
C. Ionescu ◽  
K. Onuzi ◽  
...  

2021 ◽  
Author(s):  
Alina Polonia ◽  
Andrea Artoni ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini ◽  
...  

<p>Africa-Eurasia plate convergence and the retreat of the subducting slab led to the consumption of the Tethys ocean lithosphere, which has now mostly disappeared below or accreted/exhumed within the Alps/Apennines. Slab tearing plays a major role in plate boundary evolution, asthenospheric upwelling, dynamic topography and magmatism. However, the role played by structural inheritance on the Africa plate is not well constrained. Based on seismological, geodetic and marine geophysical data, we analyse the pattern of crustal deformation in the Calabrian Arc and Sicily Channel, two key regions to unravel the complex Africa/Eurasia plate interaction in the central Mediterranean Sea.</p><p>The Calabrian Arc subduction-rollback system accommodates Africa/Eurasia plate convergence along thrust faults developing both in the frontal and inner domains of the accretionary wedge. However, the most intriguing and tectonically active features are represented by arc-orthogonal faults deforming the subduction system along a complex strike-slip/transtensional pattern that may have been the source of major earthquakes in the Calabrian Arc. Deformation along the lithospheric transtensional faults is punctuated by buried sub-circular magnetized bodies aligned with Mt. Etna, that were interpreted as serpentinite/mud diapirs intruding the subduction system from the lower plate mantle. These faults are part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments of the Calabrian Arc. To the West, the Sicily Channel is part of the Pelagian block and experienced a lithospheric-scale continental rifting starting from the late Miocene with the development of NW-SE-trending tectonic depressions, bordered by crustal normal faults with variable throws. Our geophysical data, however, show that the most active tectonic feature in the area is a N-S trending and ~220-km-long lithospheric fault system characterized by volcanism, high heat flow and seismic activity. The NW-SE elongated rifting pattern, considered the first order structure in this region, appears currently inactive and sealed by undeformed Pleistocene deposits suggesting a recent change in structural development.</p><p>Seismological data show that the lithospheric boundaries present in the Calabrian Arc and Sicily Channel correlate well with spatial changes in the depth distribution of earthquakes and separate regions with different Moho depths and thickness of the seismogenic layer. We propose that these boundaries may represent long-lived inherited Mesozoic discontinuities controlling plate boundary evolution and neotectonics.</p>


Sign in / Sign up

Export Citation Format

Share Document