scholarly journals A revised age, structural model and origin for the North Pennine Orefield in the Alston Block, northern England: intrusion (Whin Sill)-related base metal (Cu–Pb–Zn–F) mineralization

2021 ◽  
pp. jgs2020-226
Author(s):  
E. D. Dempsey ◽  
R. E. Holdsworth ◽  
D. Selby ◽  
A. Bird ◽  
B. Young ◽  
...  

Mineralization and associated fluid migration events in the c. 1500 km2 North Pennine Orefield (NPO) are known to be associated with tectonic activity, but the age of these tectonic events and origins of the base metal sulfide mineralization remain unresolved. New fieldwork in the Alston Block shows that mineralization post-dates a weakly developed phase of north–south shortening consistent with far-field Variscan basin inversion during the late Carboniferous. New observations of field relationships, coupled with microstructural observations and stress inversion analyses, together with Re–Os sulfide geochronology show that the vein-hosted mineralization (apart from barium minerals) was synchronous with a phase of north–south extension and east–west shortening coeval with emplacement of the Whin Sill (c. 297–294 Ma). Thus the development of the NPO was related to an early Permian regional phase of transtensional deformation, mantle-sourced hydrothermal mineralization and magmatism in northern Britain. Previously proposed Mississippi Valley Type models, or alternatives relating mineralization to the influx of Mesozoic brines, can no longer be applied to the development of the NPO in the Alston Block. Our findings also mean that existing models for equivalent base metal sulfide fields worldwide (e.g. Zn–Pb districts of Silesia, Poland and Tennessee, USA) may need to be reassessed.

2019 ◽  
Vol 114 (3) ◽  
pp. 473-512 ◽  
Author(s):  
Katherine S. Frank ◽  
Paul G. Spry ◽  
Hein Raat ◽  
Rodney L. Allen ◽  
Nils F. Jansson ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 176-176
Author(s):  
H. R. Lane ◽  
M. W. Frye ◽  
G. D. Couples

Biothems are regional wedge- or lens-shaped bodies of strata that are: bounded shelfward or cratonward by paleontologically recognizable unconformities; generally thicken on marine shelves, where they are typically conformable with underlying and overlying biothems; are commonly thinner or represent “starved” sequences further basinward; and in their most basinward extent, are either bounded by biostratigraphically recognizable unconformities or are conformable with underlying and overlying biothems. Biothems are practical units whose definition and degree of refinement are dependent on the quality and availability of biostratigraphic control. As recognized to date, biothems have a logical distribution of faunal and floral components, as well as facies groupings that represent internally consistent and logical sequences of depositional environments. The use of biothems as primary sequence stratigraphic units places the emphasis on relative time in a stratigraphic framework.A west-to-east transect within the North American Mississippian System, which extends from the Basin and Range Province, across the Transcontinental Arch (TA) and into the Anadarko Basin, was constructed to demonstrate the regional distribution and tectono-stratigraphic significance of biothems relative to the axis of the TA. The relationships portrayed on the transect, tied to an understanding of North American Mississippian paleogeography, imply that biothems deposited during relative highstand events on one flank of the TA are time-equivalent to biothems deposited during relative lowstand events on the opposite flank of the TA. This distribution is interpreted to have been controlled by intraplate tectonic events that formed “piano-key” basins along the flanks of the TA. The spatial patterns of these basins are not consistent with published models of basin evolution. A further conclusion is that the lack of transgressive or regressive coincident Mississippian biothems on either flank of the TA suggests that it is inadvisable to impose the Mississippi Valley-derived eustasy curve on western flank depositional sequences.


Sign in / Sign up

Export Citation Format

Share Document