valley type
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 38)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 2131 (3) ◽  
pp. 032051
Author(s):  
A I Sukhinov ◽  
V V Sidoryakina ◽  
S V Protsenko

Abstract The problem of modeling sediment transport and wave processes of large valley-type reservoir under non-stationary conditions of the hydrological cycle active phase (spring-autumn period) is considered. Coupled 2D sediment transport model and 3D wave hydrodynamics was considered to describe these processes, which uses the Navier-Stokes equations. The wave hydrodynamics model is applied to large reservoir of the valley type, such as Tsimlyansky reservoir. Detailed numerical experiments were performed taking into account the real coastline geometry and the bottom relief of the Tsimlyansk reservoir southwestern part. The developed complex of models and programs allows to predict reshaping the bottom relief and coastline under various hydrometeorological conditions. The results of modeling can be in demand when planning water management activities in valley-type reservoirs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hyunho Lee ◽  
Takanobu Sumino ◽  
Takashi Suzuki ◽  
Yutaka Sano ◽  
Noriyuki Endo ◽  
...  

Abstract Background Tibial rotational alignment in total knee arthroplasty (TKA) is generally determined based on intra-articular structure, and can be difficult to ascertain in some cases. The aim of this study was to investigate whether the medial tangent angle of the tibia (MTAT) could be useful in determining the anteroposterior axis of the tibia. Methods This study was performed on 103 lower limbs in 53 patients who underwent primary total hip arthroplasty. The selection criteria for our study were based on the assumption that knees in patients undergoing THA exhibit fewer degenerative changes than knees in patients undergoing TKA. Using computed tomography images, the MTAT, comprising the medial tangent of the proximal tibia and the anteroposterior (AP) axis of the tibia, was measured on three horizontal planes: at the distal edge of the tibial tubercle (A), at 5 cm distally (B), and at 10 cm further distally (C). The tibial medial surface was grouped into three classes according to shape: valley type, flat type, and hill type. The percentage at which these shapes were observed in each group was also calculated. Measurement reliability was calculated using the intraclass correlation coefficient. Results The angles were 45.2° (interquartile range: IR 43.0–47.7) at A, 42.7° (IR 38.7–45.9) at B, and 42.4° (IR 38.2–45.9) at C. Intra-rater reliability and inter-rater reliability was 0.982 and 0.974 at A, 0.810 and 0.411 at B, and 0.940 and 0.811 at C, respectively. Regarding the tibial medial surface, the valley type was observed in all cases at A, and the hill type was observed in the highest percentage of cases at B and C. Conclusions The MTAT was approximately 45° at level A, and reproducibility was the highest among the three groups. The two points forming the valley on the tibial medial surface were bony ridges. Therefore, the medial tangent of the tibia at level A could be easily determined. Because the distal edge of the tibial tubercle exists at the surgical area and the extra-articular area, it can be a suitable intraoperative, extra-articular landmark in determining the tibial AP axis, even for revision TKA.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Mohammed Bouabdellah ◽  
Wissale Boukirou ◽  
Adriana Potra ◽  
Erik Melchiorre ◽  
Hassan Bouzahzah ◽  
...  

Through integration of Pb-Zn ± Cu non-sulfide mineralogy, texture, and stable isotope (C, O, S) geochemistry, the world-class Touissit- Bou Beker and Jbel Bou Dahar Mississippi Valley-type districts of the Moroccan Atlasic system have been investigated in order to gain insights into the origin and processes that contributed to the formation of the base metal non-sulfide mineralization. In both districts, direct replacement (“red calamine”) and wallrock replacement (“white calamine”) ores are observed. Based on the mineral assemblages, ore textures, and crosscutting relations, three distinct mineralizing stages are recognized. The earliest, pre-non-sulfide gossanous stage was a prerequisite for the following supergene stages and constituted the driving force that ultimately promoted the leaching of most base metals such as Zn and Cu and alkalis from their rock sources. The following two stages, referred to as the main supergene “red calamine” and late “white calamine” ore stages, generated the bulk of mineable “calamine” ores in the Touissit-Bou Beker and Jbel Bou Dahar districts. Stable isotope compositions (d13CV-PDB, d18OV-SMOW, d34SCDT) support a three-stage model whereby metals were released by supergene acidic fluids and then precipitated by bacteria and archaea-mediated metal-rich meteoric fluids due to a decrease in temperature and/or increase of fO2. Oxygen isotope thermometry indicates decreasing precipitation temperatures with advancing paragenetic sequence from 33° to 18 °C, with wet to semi-arid to arid climatic conditions. The close spatial relationships between coexisting sulfide and non-sulfide mineralization along with stable isotope constraints suggest that the oxidation of sulfides occurred concurrently after the main stage of the Alpine orogeny between 15 Ma and the present. More importantly, the current data show for the first time the involvement of biologically controlled activity as the major driving process that triggered both oxidation and deposition of supergene mineralization at Jbel Bou Dahar and Touissit-Bou Beker districts. Conclusions drawn from this study therefore have implications for supergene Mississippi Valley-type (MVT) -derived non-sulfide deposits worldwide and account for the prominent role of biological processes in the genesis of this category of ore deposits.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 172
Author(s):  
Jonathan Chick ◽  
Sydney E. McKim ◽  
Adriana Potra ◽  
Walter L. Manger ◽  
John R. Samuelsen

Southern Ozark Mississippi Valley-type ores are enriched in radiogenic Pb, with isotopic signatures suggesting that metals were supplied by two end-member components. While the less radiogenic component appears to be derived from various shale and sandstone units, the source of the more radiogenic component has not yet been identified. Analyses of cherts from the Early Ordovician Cotter Dolomite and tripolitic chert from the Early Mississippian Boone Formation contain highly radiogenic Pb, with isotopic ratios comparable to those of ores. However, most samples have lower 208Pb/204Pb and 207Pb/204Pb for a given 206Pb/204Pb compared to ores. These relationships demonstrate that the enriched Pb isotopic values of the ore array cannot be related to the host and regional lithologies sampled, suggesting that the source of high ratios may lay further afield. The slope of the linear trend defined by the Pb isotope ratios of ores corresponds to an age of about 1.19 Ga. Therefore, an alternative for the linear array is the involvement of Precambrian basement in supplying ore Pb. Rare earth element patterns show that diagenetic processes involving the action of groundwater and hydrothermal fluids affected the sampled lithologies to various degrees, with Cotter Dolomite having experienced the highest degree of alteration.


2021 ◽  
Vol 90 (2) ◽  
pp. 206-210
Author(s):  
Katsunori Isobe ◽  
Syunsuke Koide ◽  
Ryota Yamazaki ◽  
Yoshihiro Kawamura ◽  
Masao Higo ◽  
...  

2021 ◽  
Author(s):  
Adriana Georgina Flórez-Rodríguez ◽  
Joaquín García-Sansegundo ◽  
Agustín Martín-Izard

<p>The Picos de Europa Region constitutes one of the outermost areas of the Cantabrian Zone, the foreland and thrust belt of the Variscan orogen in NW Iberia. It constitutes a thrust imbricate formed of Carboniferous limestones that was emplaced towards the S-SW during the latest Pennsylvanian. During the Permian and throughout the Mesozoic, the area was subjected to extension, as attested by the scarce remnants of contemporary sedimentary successions. During the N-S Cenozoic Alpine convergence between Iberia and Eurasia, the Picos the Europa Massif was deformed under shallow crustal conditions through the reactivation of previous structures.</p><p>Zn-Pb ores, in the form of sphalerite and galena, are abundant in the central and eastern sections of the Picos de Europa Massif, where they formed as Mississippi Valley-type deposits. Although a direct dating of the minerals has not been performed to date, indirect attempts have been made based on field observations and paleomagnetic studies that have resulted in a broad span of age estimations comprised between Permian and Cenozoic times. Our ongoing research includes the study of Pb isotopes within galena samples in several localities in the Picos de Europa. The measured Pb isotopic ratios (206Pb/204Pb = 18.604–18.771, and 207Pb/204Pb = 15.686–15.707) are comparable to those of other Mississippi-Valley-type and Sedex-type ore deposits situated further east in the Basque-Cantabrian Basin. This basin was formed throughout the Mesozoic as an extensional basin, and the associated ores have been dated through ore-typology (syn-sedimentary Sedex-type deposits), metallogenic data, and other geological criteria. The similarity of the isotopic ratios in these deposits and our samples from the Picos de Europa Massif suggests a similar ore formation age, around the Lower Cretaceous, based on the interpretation of a comparable Pb crustal source.</p><p>The ores from Picos de Europa are largely associated with kilometre-scale faults that have acted simultaneously as fluid conduits and zones of preferential mineralisation. Many of the studied localities display significant deformation of the ore deposits, suggesting subsequent fault reactivation events following precipitation. Thus, the age of the deposits is useful for determining the relative timing of fault reactivation. There are two main mineralised fault systems: faults trending W-E with a variable dip, and a subvertical NW-SE-trending set. Faults from the first system were originally developed as Variscan thrusts and in some cases reactivated as normal and/or, subsequently, reverse faults during the Alpine orogenic cycle (e.g. the Cabuérniga Fault System). In contrast, the age and kinematics of the second fault system are more debated. Zn-Pb deposits from the Ándara and Liordes mining districts constitute illustrative examples of ore precipitation and subsequent brittle deformation along the San Carlos N118E-trending subvertical fault and the Liordes N117E-trending high-angle fault. While the San Carlos Fault accommodated an oblique but mainly dextral strike-slip displacement during ore deformation, the Liordes Fault acted as a dextral oblique fault with a larger reverse component, likely as a result of its slightly different dip angle. The last activity on these structures post-dates the Lower Cretaceous, suggesting a clear linkage with the Alpine orogeny.</p>


Sign in / Sign up

Export Citation Format

Share Document