Load balancing using work-stealing for pipeline parallelism in emerging applications

Author(s):  
Angeles Navarro ◽  
Rafael Asenjo ◽  
Siham Tabik ◽  
Cǎlin Caşcaval
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2479 ◽  
Author(s):  
Hongyu Xiao ◽  
Zhenjiang Zhang ◽  
Zhangbing Zhou

This paper firstly replaces the first-come-first-service (FCFS) mechanism with the time-sharing (TS) mechanism in fog computing nodes (FCNs). Then a collaborative load-balancing algorithm for the TS mechanism is proposed for FCNs. The algorithm is a variant of a work-stealing scheduling algorithm, and is based on the Nash bargaining solution (NBS) for a cooperative game between FCNs. Pareto optimality is achieved through the collaborative working of FCNs to improve the performance of every FCN. Lastly the simulation results demonstrate that the game-theory based work-stealing algorithm (GWS) outperforms the classical work-stealing algorithm (CWS).


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 128419-128430 ◽  
Author(s):  
Italo A. S. Assis ◽  
Antonio D. S. Oliveira ◽  
Tiago Barros ◽  
Idalmis M. Sardina ◽  
Calebe P. Bianchini ◽  
...  

2015 ◽  
Vol 2 (2) ◽  
pp. 62-74 ◽  
Author(s):  
Siddhartha Kumar Khaitan ◽  
James D. McCalley

Due to the recent trends of chip-miniaturization, the performance of a single-core is plateauing and hence, improving the performance of serial-execution based legacy code has become challenging. Since the expansion in power system operation continues to increase the number of contingencies to be examined, serial-execution platforms present a crucial bottleneck in analyzing sufficiently large number of contingencies within a reasonably small time for performing power-system stability analysis. This paper presents an approach to parallelize power system contingency analysis over multicore processors using Chapel language. To achieve load-balancing for avoiding wastage of computation resources, the authors use efficient work-stealing scheduling. They discuss the important features of Chapel and design choices which enable us to achieve high performance gains. The approach is evaluated using hundreds of contingencies of a large 13029-bus power system. The authors compare the performance of serial-execution with that obtained using 2, 4, 8 and 16 threads. The simulation results have shown that the approach outperforms a conventional scheduling technique, namely master-slave scheduling and also scales effectively with increasing number of threads. It is believed that the performance gains obtained from the approach would be highly useful for control center operators in analyzing a large number of contingencies and thus taking suitable corrective and preventive action against catastrophic events. Also, the insights gained from these experiments will be useful in several business enterprises.


2021 ◽  
Vol Volume 34 - 2020 - Special... ◽  
Author(s):  
Rodrigue Konan Tchinda ◽  
Clémentin Tayou Djamegni

International audience Search space splitting and portfolio are the two main approaches used in parallel SAT solving. Each of them has its strengths but also, its weaknesses. Decomposition in search space splitting can help improve speedup on satisfiable instances while competition in portfolio increases robustness. Many parallel hybrid approaches have been proposed in the literature but most of them still cope with load balancing issues that are the cause of a non-negligible overhead. In this paper, we describe a new parallel hybridization scheme based on both search space splitting and portfolio that does not require the use of load balancing mechanisms (such as dynamic work stealing). Les deux principales approches utilisées dans la résolution parallèle du problème de satisfiabilité propositionnelle sont DPR (Diviser Pour Régner) et portfolio. Chacune d’elles comporte des forces et des faiblesses. La décomposition dans DPR permet d’améliorer le speedup sur les instancessatisfiables tandis que la compétition dans les portfolios accroit la robustesse. Plusieurs approches hybrides pour la résolution parallèle de SAT ont été présentées dans la littérature mais la plupart d’entre elles souffrent encore des problèmes dus aux mécanismes de rééquilibrage dynamique decharges qui sont à l’origine d’un surcoût non négligeable. Nous décrivons dans ce papier un nouveau schéma d’hybridation parallèle basé sur les deux approches DPR et portfolio ne nécessitant pas la mise en œuvre des mécanismes de rééquilibrage de charges (tels que le vol de tâche).


Sign in / Sign up

Export Citation Format

Share Document