A robust feature extraction method for human facial expressions recognition systems

Author(s):  
Muhammad Hameed Siddiqi ◽  
Faisal Farooq ◽  
Sungyoung Lee
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Lin ◽  
Yi Yumei ◽  
Zhang Maosheng ◽  
Chen Defeng ◽  
Wang Chao ◽  
...  

In speaker recognition systems, feature extraction is a challenging task under environment noise conditions. To improve the robustness of the feature, we proposed a multiscale chaotic feature for speaker recognition. We use a multiresolution analysis technique to capture more finer information on different speakers in the frequency domain. Then, we extracted the speech chaotic characteristics based on the nonlinear dynamic model, which helps to improve the discrimination of features. Finally, we use a GMM-UBM model to develop a speaker recognition system. Our experimental results verified its good performance. Under clean speech and noise speech conditions, the ERR value of our method is reduced by 13.94% and 26.5% compared with the state-of-the-art method, respectively.


2015 ◽  
Vol 40 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Sayf A. Majeed ◽  
Hafizah Husain ◽  
Salina A. Samad

Abstract In this paper, a new feature-extraction method is proposed to achieve robustness of speech recognition systems. This method combines the benefits of phase autocorrelation (PAC) with bark wavelet transform. PAC uses the angle to measure correlation instead of the traditional autocorrelation measure, whereas the bark wavelet transform is a special type of wavelet transform that is particularly designed for speech signals. The extracted features from this combined method are called phase autocorrelation bark wavelet transform (PACWT) features. The speech recognition performance of the PACWT features is evaluated and compared to the conventional feature extraction method mel frequency cepstrum coefficients (MFCC) using TI-Digits database under different types of noise and noise levels. This database has been divided into male and female data. The result shows that the word recognition rate using the PACWT features for noisy male data (white noise at 0 dB SNR) is 60%, whereas it is 41.35% for the MFCC features under identical conditions


Author(s):  
Nibras Ar Rakib ◽  
SM Zamshed Farhan ◽  
Md Mashrur Bari Sobhan ◽  
Jia Uddin ◽  
Arafat Habib

The field of biometrics has evolved tremendously for over the last century. Yet scientists are still continuing to come up with precise and efficient algorithms to facilitate automatic fingerprint recognition systems. Like other applications, an efficient feature extraction method plays an important role in fingerprint based recognition systems. This paper proposes a novel feature extraction method using minutiae points of a fingerprint image and their intersections. In this method, initially, it calculates the ridge ends and ridge bifurcations of each fingerprint image. And then, it estimates the minutiae points for the intersection of each ridge end and ridge bifurcation. In the experimental evaluation, we tested the extracted features of our proposed model using a support vector machine (SVM) classifier and experimental results show that the proposed method can accurately classify different fingerprint images.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133124 ◽  
Author(s):  
Jian Liu ◽  
Jin-Xing Liu ◽  
Ying-Lian Gao ◽  
Xiang-Zhen Kong ◽  
Xue-Song Wang ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 4066-4070 ◽  
Author(s):  
A. Mnassri ◽  
M. Bennasr ◽  
C. Adnane

The development of a real-time automatic speech recognition system (ASR) better adapted to environmental variabilities, such as noisy surroundings, speaker variations and accents has become a high priority. Robustness is required, and it can be performed at the feature extraction stage which avoids the need for other pre-processing steps. In this paper, a new robust feature extraction method for real-time ASR system is presented. A combination of Mel-frequency cepstral coefficients (MFCC) and discrete wavelet transform (DWT) is proposed. This hybrid system can conserve more extracted speech features which tend to be invariant to noise. The main idea is to extract MFCC features by denoising the obtained coefficients in the wavelet domain by using a median filter (MF). The proposed system has been implemented on Raspberry Pi 3 which is a suitable platform for real-time requirements. The experiments showed a high recognition rate (100%) in clean environment and satisfying results (ranging from 80% to 100%) in noisy environments at different signal to noise ratios (SNRs).


Sign in / Sign up

Export Citation Format

Share Document