scholarly journals Negotiation for automated generation of temporal multimedia presentations

Author(s):  
Mukesh Dalal ◽  
Steven Feiner ◽  
Kathleen McKeown ◽  
Shimei Pan ◽  
Michelle Zhou ◽  
...  
2018 ◽  
pp. 49-57
Author(s):  
N. A. Gluzman

In the modern educational space regarding the realities of the information society special importance is attached to issues related to the provision of a high level of informatization of education, which implies teachers’ mastering the necessary competencies and the ability to introduce e-learning resources into educational and training practice. Adobe Flash as one of the platforms for creating web applications and multimedia presentations enjoys greatest popularity with users including teachers. However, in connection with the announcement of discontinuing Adobe Flash support in 2020, the issue of choosing an analog to create web applications and presentations for use in teaching purposes is becoming particularly relevant. The article provides a comprehensive analysis of developing electronic educational resources by teachers using Adobe Flash and HTML5 for teaching math in primary school.


Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Leela Dodda ◽  
Daniel Cole

<div><div><div><p>Modern molecular mechanics force fields are widely used for modelling the dynamics and interactions of small organic molecules using libraries of transferable force field parameters. For molecules outside the training set, parameters may be missing or inaccurate, and in these cases, it may be preferable to derive molecule-specific parameters. Here we present an intuitive parameter derivation toolkit, QUBEKit (QUantum mechanical BEspoke Kit), which enables the automated generation of system-specific small molecule force field parameters directly from quantum mechanics. QUBEKit is written in python and combines the latest QM parameter derivation methodologies with a novel method for deriving the positions and charges of off-center virtual sites. As a proof of concept, we have re-derived a complete set of parameters for 109 small organic molecules, and assessed the accuracy by comparing computed liquid properties with experiment. QUBEKit gives highly competitive results when compared to standard transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydration respectively. This indicates that the derived parameters are suitable for molecular modelling applications, including computer-aided drug design.</p></div></div></div>


Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Leela Dodda ◽  
Daniel Cole

<div><div><div><p>Modern molecular mechanics force fields are widely used for modelling the dynamics and interactions of small organic molecules using libraries of transferable force field parameters. For molecules outside the training set, parameters may be missing or inaccurate, and in these cases, it may be preferable to derive molecule-specific parameters. Here we present an intuitive parameter derivation toolkit, QUBEKit (QUantum mechanical BEspoke Kit), which enables the automated generation of system-specific small molecule force field parameters directly from quantum mechanics. QUBEKit is written in python and combines the latest QM parameter derivation methodologies with a novel method for deriving the positions and charges of off-center virtual sites. As a proof of concept, we have re-derived a complete set of parameters for 109 small organic molecules, and assessed the accuracy by comparing computed liquid properties with experiment. QUBEKit gives highly competitive results when compared to standard transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydration respectively. This indicates that the derived parameters are suitable for molecular modelling applications, including computer-aided drug design.</p></div></div></div>


Kerntechnik ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. 196-205
Author(s):  
V.-P. Tran ◽  
H.-N. Tran ◽  
A. Yamamoto ◽  
T. Endo
Keyword(s):  

2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-23
Author(s):  
Markku Laine ◽  
Yu Zhang ◽  
Simo Santala ◽  
Jussi P. P. Jokinen ◽  
Antti Oulasvirta

Over the past decade, responsive web design (RWD) has become the de facto standard for adapting web pages to a wide range of devices used for browsing. While RWD has improved the usability of web pages, it is not without drawbacks and limitations: designers and developers must manually design the web layouts for multiple screen sizes and implement associated adaptation rules, and its "one responsive design fits all" approach lacks support for personalization. This paper presents a novel approach for automated generation of responsive and personalized web layouts. Given an existing web page design and preferences related to design objectives, our integer programming -based optimizer generates a consistent set of web designs. Where relevant data is available, these can be further automatically personalized for the user and browsing device. The paper includes presentation of techniques for runtime adaptation of the designs generated into a fully responsive grid layout for web browsing. Results from our ratings-based online studies with end users (N = 86) and designers (N = 64) show that the proposed approach can automatically create high-quality responsive web layouts for a variety of real-world websites.


Sign in / Sign up

Export Citation Format

Share Document