A study to understand the impact of node density on data dissemination time in opportunistic networks

Author(s):  
Kamini Garg ◽  
Silvia Giordano ◽  
Anna Förster
Author(s):  
Halikul Lenando ◽  
Aref Hassan Kurd Ali ◽  
Mohamad Alrfaay

Background: In traditional networks, nodes drop messages in order to free up enough space for buffer optimization. However, keeping messages alive until it reaches its destination is crucial in Opportunistic Networks. Therefore, this paper proposes an Acumen Message Drop scheme (AMD) that consider the impact of the message drop decision on data dissemination performance. Methods: In order to achieve this goal, AMD drops the message based on the following considerations: the estimated time of message's arrival to its destination, message time to live, message transmission time, and the waiting time of the message in the queue. AMD scheme works as a plug-in in any routing protocol. Results: Performance evaluation shows that the integration of the proposed scheme with the PRoPHET routing protocol may increase efficiency by up to 80%, while if integrated with Epidemic routing protocol, efficiency increases by up to 35%. Moreover, the proposed system significantly increases performance in the case of networks with limited resources. Conclusion: To the best of our knowledge, most of the previous works did not address the issue of formulating the message drop decision in the non-social stateless opportunistic networks without affecting performance.


In this research paper compare the protocol’s performance together with the experimental results of optimal routing using real-life scenarios of vehicles and pedestrians roaming in a city. In this research paper, conduct several simulation comparison experiments(in the NS2 Software) to show the impact of changing buffer capacity, packet lifetime, packet generation rate, and number of nodes on the performance metrics. This research paper is concluded by providing guidelines to develop an efficient DTN routing protocol. To the best of researcher(Parameswari et al.,) knowledge, this work is the first to provide a detailed performance comparison among the diverse collection of DTN routing protocols.


2010 ◽  
pp. 1595-1613
Author(s):  
Fei Liu ◽  
Geert Heijenk

A very promising approach to discovering services and context information in ad-hoc networks is based on the use of Attenuated Bloom filters. In this paper we analyze the impact of changes in the connectivity of an ad-hoc network on this approach. We evaluate the performance of the discovery protocol while nodes appear, disappear, and move, through analytical and simulative analysis. The analytical results are shown to be accurate when node density is high. We show that an almost linear relation exists between the density of the network and the number of update messages to be exchanged. Further, in case of nodes moving, the number of messages exchanged does not increase with the speed of movement.


Author(s):  
Radu Ioan Ciobanu ◽  
Ciprian Dobre

When mobile devices are unable to establish direct communication, or when communication should be offloaded to cope with large throughputs, mobile collaboration can be used to facilitate communication through opportunistic networks. These types of networks, formed when mobile devices communicate only using short-range transmission protocols, usually when users are close, can help applications still exchange data. Routes are built dynamically, since each mobile device is acting according to the store-carry-and-forward paradigm. Thus, contacts are seen as opportunities to move data towards the destination. In such networks data dissemination is usually based on a publish/subscribe model. Opportunistic data dissemination also raises questions concerning user privacy and incentives. In this the authors present a motivation of using opportunistic networks in various real life use cases, and then analyze existing relevant work in the area of data dissemination. The authors present the categories of a proposed taxonomy that captures the capabilities of data dissemination techniques used in opportunistic networks. Moreover, the authors survey relevant techniques and analyze them using the proposed taxonomy.


2019 ◽  
Vol 11 (5) ◽  
pp. 113 ◽  
Author(s):  
Vishnupriya Kuppusamy ◽  
Udaya Thanthrige ◽  
Asanga Udugama ◽  
Anna Förster

A variety of applications and forwarding protocols have been proposed for opportunistic networks (OppNets) in the literature. However, the methodology of evaluation, testing and comparing these forwarding protocols are not standardized yet, which leads to large levels of ambiguity in performance evaluation studies. Performance results depend largely on the evaluation environment, and on the used parameters and models. More comparability in evaluation scenarios and methodologies would largely improve also the availability of protocols and the repeatability of studies, and thus would accelerate the development of this research topic. In this survey paper, we focus our attention on how various OppNets data forwarding protocols are evaluated rather than what they actually achieve. We explore the models, parameters and the evaluation environments and make observations about their scalability, realism and comparability. Finally, we deduce some best practices on how to achieve the largest impact of future evaluation studies of OppNets data dissemination/forwarding protocols.


2010 ◽  
Vol 171-172 ◽  
pp. 561-564
Author(s):  
Hui Ye ◽  
Zhi Gang Chen ◽  
Xiao Jian Shen

Recently, many researchers focus on delay tolerant networks (DTN). In DTN, the mobile characteristic of nodes is used to help transfer data. Therefore, how to use the cooperative relations and cache resource of nodes effectively to avoid network congestion and improve network performance is an important issue. In this paper, we proposed a cooperative caching policy based on human mobile patterns, which referred as HMP-Cache. The node movement characteristics are discussed in detail in HMP-Cache. HMP-Cache uses the standard of target address matching to choose cooperative caching nodes. In addition, the sharing caching information is done by synchronization of caching table in local region. Therefore, the impact of useless data dissemination of multiple hops is reduced. And the shortcoming of limited caching resources is compensated. The simulation results show that our policy can control the network cost effectively. Also, the remote data latency is reduced.


Sign in / Sign up

Export Citation Format

Share Document