Smartphone based multimodal activity detection system using plantar pressure sensors

Author(s):  
Ferdaus Ahmed Kawsar ◽  
Sheikh Iqbal Ahamed ◽  
Richard Love
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2246
Author(s):  
Scott Pardoel ◽  
Gaurav Shalin ◽  
Julie Nantel ◽  
Edward D. Lemaire ◽  
Jonathan Kofman

Freezing of gait (FOG) is a sudden and highly disruptive gait dysfunction that appears in mid to late-stage Parkinson’s disease (PD) and can lead to falling and injury. A system that predicts freezing before it occurs or detects freezing immediately after onset would generate an opportunity for FOG prevention or mitigation and thus enhance safe mobility and quality of life. This research used accelerometer, gyroscope, and plantar pressure sensors to extract 861 features from walking data collected from 11 people with FOG. Minimum-redundancy maximum-relevance and Relief-F feature selection were performed prior to training boosted ensembles of decision trees. The binary classification models identified Total-FOG or No FOG states, wherein the Total-FOG class included data windows from 2 s before the FOG onset until the end of the FOG episode. Three feature sets were compared: plantar pressure, inertial measurement unit (IMU), and both plantar pressure and IMU features. The plantar-pressure-only model had the greatest sensitivity and the IMU-only model had the greatest specificity. The best overall model used the combination of plantar pressure and IMU features, achieving 76.4% sensitivity and 86.2% specificity. Next, the Total-FOG class components were evaluated individually (i.e., Pre-FOG windows, Freeze windows, transition windows between Pre-FOG and Freeze). The best model detected windows that contained both Pre-FOG and FOG data with 85.2% sensitivity, which is equivalent to detecting FOG less than 1 s after the freeze began. Windows of FOG data were detected with 93.4% sensitivity. The IMU and plantar pressure feature-based model slightly outperformed models that used data from a single sensor type. The model achieved early detection by identifying the transition from Pre-FOG to FOG while maintaining excellent FOG detection performance (93.4% sensitivity). Therefore, if used as part of an intelligent, real-time FOG identification and cueing system, even if the Pre-FOG state were missed, the model would perform well as a freeze detection and cueing system that could improve the mobility and independence of people with PD during their daily activities.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eung Tae Kim ◽  
Sungmin Kim

AbstractA smart insole system consisting of pressure sensors, wireless communication modules, and pressure monitoring software has been developed to measure plantar pressure distribution that appears in sewing process. This system calculates the cycle time of each operation by analyzing the real-time plantar pressure data. The operation cycle time was divided into the time done by machine and by manual and calculated by adding the two types of time. By analyzing the cycle time, it is possible to estimate the type of operation a worker is performing. The ability to calculate accurate cycle time and to manage a large volume of data is the advantage of this system. Establishing an accurate cycle time of all operations would be of great help in improving the production process, capacity planning, line efficiency, and labor cost calculation. The system is expected to be a good alternative to the conventional manual measurement process. It will also be able to meet the high demand from garment manufacturers for automated monitoring systems.


2020 ◽  
Vol 8 (6) ◽  
pp. 3949-3953

Nowadays there is a significant study effort due to the popularity of CCTV to enhance analysis methods for surveillance videos and video-based images in conjunction with machine learning techniques for the purpose of independent assessment of such information sources. Although recognition of human intervention in computer vision is extremely attained subject, abnormal behavior detection is lately attracting more research attention. In this paper, we are interested in the studying the two main steps that compose abnormal human activity detection system which are the behavior representation and modelling. And we use different techniques, related to feature extraction and description for behavior representation as well as unsupervised classification methods for behavior modelling. In addition, available datasets and metrics for performance evaluation will be presented. Finally, this paper will be aimed to detect abnormal behaved object in crowd, such as fast motion in a crowd of walking people


1992 ◽  
Vol 43 (4) ◽  
pp. 688-690 ◽  
Author(s):  
Howard N. Krum ◽  
Robert J. Sheehan

Sign in / Sign up

Export Citation Format

Share Document