scholarly journals Exploring customer specific KPI selection strategies for an adaptive time critical user interface

Author(s):  
Ingo R. Keck ◽  
Robert J. Ross
2011 ◽  
Vol 50 (05) ◽  
pp. 408-419 ◽  
Author(s):  
B. Volckaert ◽  
B. Dhoedt ◽  
F. De Turck ◽  
S. Van Hoecke

SummaryBackground: E-homecare creates opportunities to provide care faster, at lower cost and higher levels of convenience for patients. As e-homecare services are time-critical, stringent requirements are imposed in terms of total response time and reliability, this way requiring a characterization of their network load and usage behavior. However, it is usually hard to build testbeds on a realistic scale in order to evaluate large-scale e-home-care applications.Objective: This paper describes the design and evaluation of the Network Simulator for Web Services (WS-NS), an NS2-based simulator capable of accurately modeling service-oriented architectures that can be used to evaluate the performance of e-homecare architectures.Methods: WS-NS is applied to the Coplintho e-homecare use case, based on the results of the field trial prototype which targeted diabetes and multiple sclerosis patients. Network-unaware and network-aware service selection algorithms are presented and their performance is tested.Results: The results show that when selecting a service to execute the request, suboptimal decisions can be made when selection is solely based on the service’s properties and status. Taking into account the network links interconnecting the services leads to better selection strategies. Based on the results, the e-homecare broker design is optimized from a centralized design to a hierarchical region-based design, resulting in an important decrease of average response times.Conclusions: The WS-NS simulator can be used to analyze the load and response times of large-scale e-homecare architectures. An optimization of the e-homecare architecture of the Coplintho project resulted in optimized network overhead and more than 45% lower response times.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
Lindsey M. Kitchell ◽  
Francisco J. Parada ◽  
Brandi L. Emerick ◽  
Tom A. Busey

2004 ◽  
Author(s):  
Brian Dorn ◽  
Daniel Zelik ◽  
Harisudhakar Vepadharmalingam ◽  
Mayukh Ghosh ◽  
S. Keith Adams
Keyword(s):  

2010 ◽  
Author(s):  
Martin L. Fracker ◽  
Michal Heck ◽  
George Goeschel

Sign in / Sign up

Export Citation Format

Share Document