Trade-off between energy and quality of service through dynamic operand truncation and fusion

Author(s):  
Wenchao Qian ◽  
Robert Karam ◽  
Swarup Bhunia
Keyword(s):  
2022 ◽  
Vol 22 (1) ◽  
pp. 1-31
Author(s):  
Marwa Daaji ◽  
Ali Ouni ◽  
Mohamed Mohsen Gammoudi ◽  
Salah Bouktif ◽  
Mohamed Wiem Mkaouer

Web service composition allows developers to create applications via reusing available services that are interoperable to each other. The process of selecting relevant Web services for a composite service satisfying the developer requirements is commonly acknowledged to be hard and challenging, especially with the exponentially increasing number of available Web services on the Internet. The majority of existing approaches on Web Services Selection are merely based on the Quality of Service (QoS) as a basic criterion to guide the selection process. However, existing approaches tend to ignore the service design quality, which plays a crucial role in discovering, understanding, and reusing service functionalities. Indeed, poorly designed Web service interfaces result in service anti-patterns, which are symptoms of bad design and implementation practices. The existence of anti-pattern instances in Web service interfaces typically complicates their reuse in real-world service-based systems and may lead to several maintenance and evolution problems. To address this issue, we introduce a new approach based on the Multi-Objective and Optimization on the basis of Ratio Analysis method (MOORA) as a multi-criteria decision making (MCDM) method to select Web services based on a combination of their (1) QoS attributes and (2) QoS design. The proposed approach aims to help developers to maintain the soundness and quality of their service composite development processes. We conduct a quantitative and qualitative empirical study to evaluate our approach on a Quality of Web Service dataset. We compare our MOORA-based approach against four commonly used MCDM methods as well as a recent state-of-the-art Web service selection approach. The obtained results show that our approach outperforms state-of-the-art approaches by significantly improving the service selection quality of top- k selected services while providing the best trade-off between both service design quality and desired QoS values. Furthermore, we conducted a qualitative evaluation with developers. The obtained results provide evidence that our approach generates a good trade-off for what developers need regarding both QoS and quality of design. Our selection approach was evaluated as “relevant” from developers point of view, in improving the service selection task with an average score of 3.93, compared to an average of 2.62 for the traditional QoS-based approach.


Author(s):  
Manh-Hung Tran ◽  
Thien-Binh Dang ◽  
Vi Van Vo ◽  
Duc-Tai Le ◽  
Moonseong Kim ◽  
...  
Keyword(s):  

2003 ◽  
Vol 41 (6) ◽  
pp. 32-36 ◽  
Author(s):  
M. Welzl ◽  
M. Muhlhauser
Keyword(s):  

2011 ◽  
pp. 302-314
Author(s):  
Tuna Tugcu

Connection Admission Control (CAC) is the process that decides which connection requests are admitted to the system and allocated resources. CAC in wireless networks differs from wireline networks due to mobility and scarcity of wireless resources, and the physical properties of the radio channels. In this chapter, the basic issues in CAC for wireless systems are discussed in the context of resource management and trade-off between blocking and dropping rates. Though it is not among the topics of this chapter, quality of service (QoS) provisioning is also briefly mentioned due to its relationship with CAC. Following the discussion of the common and different points of CAC in both wireline and wireless systems, admission control in next-generation wireless systems is explained.


Author(s):  
Nizar Zorba ◽  
Christos V. Verikoukis

The use of real-time delay-sensitive applications in wireless systems has significantly increased during the last years. Consequently, the demand to guarantee certain Quality of Service (QoS) is a challenging issue for the system’s designers. On the other hand, the use of multiple antennas has already been included in several commercial standards, where the multibeam opportunistic transmission beamforming strategies have been proposed to improve the performance of the wireless systems. A cross-layer based dynamically tuned queue length scheduler is presented in this chapter, for the Downlink of multiuser and multiantenna WLAN systems with heterogeneous traffic requirements. An opportunistic scheduling algorithm is applied, while users from higher priority traffic classes are prioritized. A trade-off between the throughput maximization of the system and the guarantee of the QoS requirements is obtained. Therefore the length of the queue is dynamically adjusted to select the appropriate conditions based on the operator requirements.


Sign in / Sign up

Export Citation Format

Share Document