Real-Time Calibration of a Human Thermal Model with Solar Radiation Using Wearable Sensors

Author(s):  
Takashi Hamatani ◽  
Akira Uchiyama ◽  
Teruo Higashino
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1104
Author(s):  
Shin-Yan Chiou ◽  
Kun-Ju Lin ◽  
Ya-Xin Dong

Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patients by 6.14 ± 4.61 min. This convinces us the system is correct and can improve time efficiency, while avoiding human error and staff pressure, and avoiding trouble for patients and their families.


Author(s):  
Yaqoub Yusuf ◽  
Jodi Boutte’ ◽  
Asante’ Lloyd ◽  
Emma Fortune ◽  
Renaldo C. Blocker

A workplace that is a conduit for positive emotions can be important to employees retention and can contribute optimal levels of productivity. Validated tools for examining emotions are primarily subjective and retrospective in nature. Recent advances in technology have led to more novel and passive ways of measuring emotions. Wearable sensors, such as electroencephalogram (EEG), are being explored to assess cognitive and physical burdens objectively and in real-time. Therefore, there exists a need to investigate and validate the use of EEG to examine emotions objectively and in real-time. In this paper, we conducted a scoping review of EEG to measure positive emotions and/or indicators of joy in the workplace. Our review results in 22 articles that employ EEG to study joy in occupational settings. Three major themes identified in the analysis include (1) EEG for symptoms detection and outcomes, (2) Populations studied using EEG, and (3) EEG electrode systems.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2727
Author(s):  
Hari Prasanth ◽  
Miroslav Caban ◽  
Urs Keller ◽  
Grégoire Courtine ◽  
Auke Ijspeert ◽  
...  

Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait analysis is key to the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This article presents a systematic review of wearable sensors and techniques used in real-time gait analysis, and their application to pathological gait. From four major scientific databases, we identified 1262 articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors and the shank and foot are the preferred placements. Insole pressure sensors are the most common sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on threshold or peak detection are the most widely used gait detection method. The heterogeneity of evaluation criteria prevented quantitative performance comparison of all methods. Although most studies predicted that the proposed methods would work on pathological gait, less than one third were validated on such data. Clinical applications of gait detection algorithms were considered, and we recommend a combination of IMU and rule-based methods as an optimal solution.


Sensor Review ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Richard Bloss

Purpose – The purpose of this paper is to review the recent advancements in the development of wearable sensors which can continuously monitor critical medical, assess athletic activity, watch babies and serve industrial applications. Design/methodology/approach – The paper presents an in-depth review of a number of developments in wearable sensing and monitoring technologies for medical, athletic and industrial applications. Researchers and companies around the world were contacted to discuss their direction and progress in this field of medical condition and industrial monitoring, as well as discussions with medical personnel on the perceived benefits of such technology. Findings – Dramatic progress is being made in continuous monitoring of many important body functions that indicate critical medical conditions that can be life-threatening, contribute to blindness or access activity. In the industrial arena, wearable devices bring remote monitoring to a new level. Practical implications – Doctors will be able to replace one-off tests with continuous monitoring that provides a much better continuous real-time “view” into the patient’s conditions. Wearable monitors will help provide much better medical care in the future. Industrial managers and others will be able to monitor and supervise remotely. Originality/value – An expert insight into advancements in medical condition monitoring that replaces the one-time “finger prick” type testing only performed in the doctor’s office. It is also a look at how wearable monitoring is greatly improved and serving athletics, the industry and parents.


Sign in / Sign up

Export Citation Format

Share Document