scholarly journals Neuromodulation Improves the Evolution of Forward Models

Author(s):  
Mohammad Sadegh Norouzzadeh ◽  
Jeff Clune
Keyword(s):  
2019 ◽  
Vol 28 (4) ◽  
pp. 805-816 ◽  
Author(s):  
Ruijing Li ◽  
Houjin Chen ◽  
Yahui Peng ◽  
Jupeng Li

2019 ◽  
Vol 11 (6) ◽  
pp. 653 ◽  
Author(s):  
Chunchun Gao ◽  
Yang Lu ◽  
Zizhan Zhang ◽  
Hongling Shi

Many recent mass balance estimates using the Gravity Recovery and Climate Experiment (GRACE) and satellite altimetry (including two kinds of sensors of radar and laser) show that the ice mass of the Antarctic ice sheet (AIS) is in overall decline. However, there are still large differences among previously published estimates of the total mass change, even in the same observed periods. The considerable error sources mainly arise from the forward models (e.g., glacial isostatic adjustment [GIA] and firn compaction) that may be uncertain but indispensable to simulate some processes not directly measured or obtained by these observations. To minimize the use of these forward models, we estimate the mass change of ice sheet and present-day GIA using multi-geodetic observations, including GRACE and Ice, Cloud and land Elevation Satellite (ICESat), as well as Global Positioning System (GPS), by an improved method of joint inversion estimate (JIE), which enables us to solve simultaneously for the Antarctic GIA and ice mass trends. The GIA uplift rates generated from our JIE method show a good agreement with the elastic-corrected GPS uplift rates, and the total GIA-induced mass change estimate for the AIS is 54 ± 27 Gt/yr, which is in line with many recent GPS calibrated GIA estimates. Our GIA result displays the presence of significant uplift rates in the Amundsen Sea Embayment of West Antarctica, where strong uplift has been observed by GPS. Over the period February 2003 to October 2009, the entire AIS changed in mass by −84 ± 31 Gt/yr (West Antarctica: −69 ± 24, East Antarctica: 12 ± 16 and the Antarctic Peninsula: −27 ± 8), greater than the GRACE-only estimates obtained from three Mascon solutions (CSR: −50 ± 30, JPL: −71 ± 30, and GSFC: −51 ± 33 Gt/yr) for the same period. This may imply that single GRACE data tend to underestimate ice mass loss due to the signal leakage and attenuation errors of ice discharge are often worse than that of surface mass balance over the AIS.


2020 ◽  
Vol 90 (9) ◽  
pp. 1139-1155
Author(s):  
Nicolas Goudemand ◽  
Pulkit Singh ◽  
Jonathan L. Payne

ABSTRACT A key challenge regarding development of carbonate platforms is predicting the temporal pattern of platform-margin progradation, aggradation, retrogradation, and drowning. Numerical forward models of carbonate sedimentation have been widely applied to this problem, shedding substantial light on the roles of sediment production, transport, tectonic subsidence, and eustasy on the evolution of carbonate platforms. However, forward models are typically complex and computationally expensive, preventing comprehensive exploration of parameter space. In addition, the interactions among parameters are often nonlinear, preventing the development of simple expressions relating the position of the platform margin to the governing parameters of the model. To complement the considerable insights derived from numerical forward models, this study presents analytical expressions for the temporal evolution of the position of platform margins using the simplest possible assumptions regarding sediment production and transport. These expressions provide useful null models, deviations from which can be used to identify the particular effects of biology or seawater chemistry on carbonate factories in influencing the development of these important sedimentary deposits. Application of the model to synthetic and outcrop examples demonstrates that these simple equations are useful for parameter estimation that can then be used to guide more detailed, process-based numerical forward models.


2018 ◽  
Vol 32 (15) ◽  
pp. 5041-5052 ◽  
Author(s):  
Georgios N. Kouziokas ◽  
Alexander Chatzigeorgiou ◽  
Konstantinos Perakis

2014 ◽  
Vol 8 (3) ◽  
pp. 2995-3035 ◽  
Author(s):  
N. Schön ◽  
A. Zammit-Mangion ◽  
J. L. Bamber ◽  
J. Rougier ◽  
T. Flament ◽  
...  

Abstract. The Antarctic Ice Sheet is the largest potential source of future sea-level rise. Mass loss has been increasing over the last two decades in the West Antarctic Ice Sheet (WAIS), but with significant discrepancies between estimates, especially for the Antarctic Peninsula. Most of these estimates utilise geophysical models to explicitly correct the observations for (unobserved) processes. Systematic errors in these models introduce biases in the results which are difficult to quantify. In this study, we provide a statistically rigorous, error-bounded trend estimate of ice mass loss over the WAIS from 2003–2009 which is almost entirely data-driven. Using altimetry, gravimetry, and GPS data in a hierarchical Bayesian framework, we derive spatial fields for ice mass change, surface mass balance, and glacial isostatic adjustment (GIA) without relying explicitly on forward models. The approach we use separates mass and height change contributions from different processes, reproducing spatial features found in, for example, regional climate and GIA forward models, and provides an independent estimate, which can be used to validate and test the models. In addition, full spatial error estimates are derived for each field. The mass loss estimates we obtain are smaller than some recent results, with a time-averaged mean rate of −76 ± 15 GT yr−1 for the WAIS and Antarctic Peninsula (AP), including the major Antarctic Islands. The GIA estimate compares very well with results obtained from recent forward models (IJ05-R2) and inversion methods (AGE-1). Due to its computational efficiency, the method is sufficiently scalable to include the whole of Antarctica, can be adapted for other ice sheets and can easily be adapted to assimilate data from other sources such as ice cores, accumulation radar data and other measurements that contain information about any of the processes that are solved for.


Sign in / Sign up

Export Citation Format

Share Document